Multidecadal Modulations of ENSO influence on cyclogenesis in the Tropical Atlantic

Author(s):  
Adama Badiane ◽  
Belén Rodríguez-Fonseca ◽  
Teresa Losada ◽  
Abdou Lahat Dieng ◽  
Saidou Moustapha Sall

<p align="justify"><span>The impact of ENSO (El Niño Southern Oscillation) events on the cyclogenesis of the eastern tropical North Atlantic is highlighted, focusing on decadal variations of the interannual relationship at the Senegalese coast, which is the main cyclone development region (MDR). SST anomalies in the Equatorial Pacific associated with ENSO events affect vertical wind shear over the eastern Atlantic, by inducing strong subsidence of dry air over the eastern Atlantic which tends to inhibit deep convection and thus be unfavorable to cyclonic activity. Based on 20yr- correlations between the number of cyclones that are born in the MDR and ENSO index, we have selected two different periods of study (period1: 1950-1969; and period2: 1996-2015).The results show that period2 presents the highest scores of negative correlations between ENSO and tropical Atlantic cyclogenesis. Although there is an intensification of ENSO events during period2 compared to period1, we have found that decadal changes in climatology have a more significant effect on the MDR than the interannual changes. Additionally, the changes in the interannual signal appear to be related to the concomitant action of interannual SST anomalies over the whole tropical basins.</span></p>

2012 ◽  
Vol 25 (3) ◽  
pp. 858-864 ◽  
Author(s):  
Xiaojie Zhu ◽  
R. Saravanan ◽  
Ping Chang

Abstract Vertical wind shear over the tropical Atlantic Ocean plays an important role in mediating hurricane activity. The vertical shear variability over the main development region for Atlantic hurricanes is affected by local factors as well as by the remote influence of the El Niño–Southern Oscillation (ENSO) phenomenon, as indicated by observational and climate modeling analyses. Climate model simulations of the ENSO–shear relationship are compared with observations. It is shown that there is a strong influence of background mean flow on the ENSO–shear relationship, because of the inherently nonlinear nature of vertical wind shear. In particular, the simulation of zonal flow over the tropical Atlantic is shown to play a critical role in how the remote influence of ENSO modulates the shear. Even with realistic simulations of the ENSO-induced westerly anomaly in the upper troposphere, overestimated easterly background flow in the model simulations can alter the relationship between ENSO and vertical wind shear, resulting in decreased vertical wind shear during warm ENSO events. This nonlinear superposition has important implications for the assessment of trends in large-scale environmental factors affecting tropical cyclogenesis in climate change simulations.


2021 ◽  
Author(s):  
Markus Deppner ◽  
Bedartha Goswami

<p>The impact of the El Niño Southern Oscillation (ENSO) on rivers are well known, but most existing studies involving streamflow data are severely limited by data coverage. Time series of gauging stations fade in and out over time, which makes hydrological large scale and long time analysis or studies of rarely occurring extreme events challenging. Here, we use a machine learning approach to infer missing streamflow data based on temporal correlations of stations with missing values to others with data. By using 346 stations, from the “Global Streamflow Indices and Metadata archive” (GSIM), that initially cover the 40 year timespan in conjunction with Gaussian processes we were able to extend our data by estimating missing data for an additional 646 stations, allowing us to include a total of 992 stations. We then investigate the impact of the 6 strongest El Niño (EN) events on rivers in South America between 1960 and 2000. Our analysis shows a strong correlation between ENSO events and extreme river dynamics in the southeast of Brazil, Carribean South America and parts of the Amazon basin. Furthermore we see a peak in the number of stations showing maximum river discharge all over Brazil during the EN of 1982/83 which has been linked to severe floods in the east of Brazil, parts of Uruguay and Paraguay. However EN events in other years with similar intensity did not evoke floods with such magnitude and therefore the additional drivers of the 1982/83  floods need further investigation. By using machine learning methods to infer data for gauging stations with missing data we were able to extend our data by almost three-fold, revealing a possible heavier and spatially larger impact of the 1982/83 EN on South America's hydrology than indicated in literature.</p>


2008 ◽  
Vol 26 (11) ◽  
pp. 3457-3476 ◽  
Author(s):  
A. S. Taschetto ◽  
I. Wainer

Abstract. The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Niño – Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.


2019 ◽  
Vol 32 (22) ◽  
pp. 7643-7661 ◽  
Author(s):  
Dillon J. Amaya ◽  
Yu Kosaka ◽  
Wenyu Zhou ◽  
Yu Zhang ◽  
Shang-Ping Xie ◽  
...  

Abstract Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.


2012 ◽  
Vol 25 (21) ◽  
pp. 7743-7763 ◽  
Author(s):  
A. Santoso ◽  
M. H. England ◽  
W. Cai

The impact of Indo-Pacific climate feedback on the dynamics of El Niño–Southern Oscillation (ENSO) is investigated using an ensemble set of Indian Ocean decoupling experiments (DCPL), utilizing a millennial integration of a coupled climate model. It is found that eliminating air–sea interactions over the Indian Ocean results in various degrees of ENSO amplification across DCPL simulations, with a shift in the underlying dynamics toward a more prominent thermocline mode. The DCPL experiments reveal that the net effect of the Indian Ocean in the control runs (CTRL) is a damping of ENSO. The extent of this damping appears to be negatively correlated to the coherence between ENSO and the Indian Ocean dipole (IOD). This type of relationship can arise from the long-lasting ENSO events that the model simulates, such that developing ENSO often coincides with Indian Ocean basin-wide mode (IOBM) anomalies during non-IOD years. As demonstrated via AGCM experiments, the IOBM enhances western Pacific wind anomalies that counteract the ENSO-enhancing winds farther east. In the recharge oscillator framework, this weakens the equatorial Pacific air–sea coupling that governs the ENSO thermocline feedback. Relative to the IOBM, the IOD is more conducive for ENSO growth. The net damping by the Indian Ocean in CTRL is thus dominated by the IOBM effect which is weaker with stronger ENSO–IOD coherence. The stronger ENSO thermocline mode in DCPL is consistent with the absence of any IOBM anomalies. This study supports the notion that the Indian Ocean should be viewed as an integral part of ENSO dynamics.


2012 ◽  
Vol 25 (18) ◽  
pp. 6318-6329 ◽  
Author(s):  
Wenju Cai ◽  
Peter van Rensch ◽  
Tim Cowan ◽  
Harry H. Hendon

Abstract Recent research has shown that the climatic impact from El Niño–Southern Oscillation (ENSO) on middle latitudes west of the western Pacific (e.g., southeast Australia) during austral spring (September–November) is conducted via the tropical Indian Ocean (TIO). However, it is not clear whether this impact pathway is symmetric about the positive and negative phases of ENSO and the Indian Ocean dipole (IOD). It is shown that a strong asymmetry does exist. For ENSO, only the impact from El Niño is conducted through the TIO pathway; the impact from La Niña is delivered through the Pacific–South America pattern. For the IOD, a greater convection anomaly and wave train response occurs during positive IOD (pIOD) events than during negative IOD (nIOD) events. This “impact asymmetry” is consistent with the positive skewness of the IOD, principally due to a negative skewness of sea surface temperature (SST) anomalies in the east IOD (IODE) pole. In the IODE region, convection anomalies are more sensitive to a per unit change of cold SST anomalies than to the same unit change of warm SST anomalies. This study shows that the IOD skewness occurs despite the greater damping, rather than due to a breakdown of this damping as suggested by previous studies. This IOD impact asymmetry provides an explanation for much of the reduction in spring rainfall over southeast Australia during the 2000s. Key to this rainfall reduction is the increased occurrences of pIOD events, more so than the lack of nIOD events.


2016 ◽  
Vol 73 (3) ◽  
pp. 1401-1418 ◽  
Author(s):  
Gan Zhang ◽  
Zhuo Wang ◽  
Timothy J. Dunkerton ◽  
Melinda S. Peng ◽  
Gudrun Magnusdottir

Abstract With warm sea surface temperature (SST) anomalies in the tropical Atlantic and cold SST anomalies in the east Pacific, the unusually quiet hurricane season in 2013 was a surprise to the hurricane community. The authors’ analyses suggest that the substantially suppressed Atlantic tropical cyclone (TC) activity in August 2013 can be attributed to frequent breaking of midlatitude Rossby waves, which led to the equatorward intrusion of cold and dry extratropical air. The resultant mid- to upper-tropospheric dryness and strong vertical wind shear hindered TC development. Using the empirical orthogonal function analysis, the active Rossby wave breaking in August 2013 was found to be associated with a recurrent mode of the midlatitude jet stream over the North Atlantic, which represents the variability of the intensity and zonal extent of the jet. This mode is significantly correlated with Atlantic hurricane frequency. The correlation coefficient is comparable to the correlation of Atlantic hurricane frequency with the main development region (MDR) relative SST and higher than that with the Niño-3.4 index. This study highlights the extratropical impacts on Atlantic TC activity, which may have important implications for the seasonal predictability of Atlantic TCs.


Gaia Scientia ◽  
2019 ◽  
Vol 13 (4) ◽  
Author(s):  
Robson de Sousa Nascimento ◽  
José Ivaldo Barbosa de Brito ◽  
Valéria Peixoto Borges

The goal of the present study it was to know the behavior of the Net Primary Production (NPP) in years that have occurred El Niño Southern Oscillation (ENSO) and during the temperature anomalies of the surface of the Sea (SST) in the Tropical Atlantic, that is Atlantic Dipole. The results showed that the Amazon Rainforest, Atlantic Forest, and the Cerrado were not enough affected by the occurrence of El Niño Southern Oscillation and Atlantic Dipole. However, the Caatinga biome has shown to be quite sensitive to these events and patterns, especially in years of occurrence of El Niño, which contributed to a reduction in NPP; while in years of El Niña and negative dipole, the NPP achieved the highest values. The amount of rainfall in the previous year to the El Niño Southern Oscillation episodes showed influence on the amount of carbon sequestered by biomes in the year of study.


2020 ◽  
Vol 20 (23) ◽  
pp. 15357-15378
Author(s):  
Peng Xian ◽  
Philip J. Klotzbach ◽  
Jason P. Dunion ◽  
Matthew A. Janiga ◽  
Jeffrey S. Reid ◽  
...  

Abstract. Previous studies have noted a relationship between African dust and Atlantic tropical cyclone (TC) activity. However, due to the limitations of past dust analyses, the strength of this relationship remains uncertain. The emergence of aerosol reanalyses, including the Navy Aerosol Analysis and Prediction System (NAAPS) aerosol optical depth (AOD) reanalysis, NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and ECMWF Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA), enables an investigation of the relationship between African dust and TC activity over the tropical Atlantic and Caribbean in a consistent temporal and spatial manner for 2003–2018. Although June–July–August (JJA) 550 nm dust AOD (DAOD) from all three reanalysis products correlates significantly over the tropical Atlantic and Caribbean, the difference in DAOD magnitude between products can be as large as 60 % over the Caribbean and 20 % over the tropical North Atlantic. Based on the three individual reanalyses, we have created an aerosol multi-reanalysis consensus (MRC). The MRC presents overall better root mean square error over the tropical Atlantic and Caribbean compared to individual reanalyses when verified with ground-based AErosol RObotic NETwork (AERONET) AOD measurements. Each of the three individual reanalyses and the MRC have significant negative correlations between JJA Caribbean DAOD and seasonal Atlantic accumulated cyclone energy (ACE), while the correlation between JJA tropical North Atlantic DAOD and seasonal ACE is weaker. Possible reasons for this regional difference are provided. A composite analysis of 3 high-JJA-Caribbean-DAOD years versus 3 low-JJA-Caribbean-DAOD years reveals large differences in overall Atlantic TC activity. We also show that JJA Caribbean DAOD is significantly correlated with large-scale fields associated with variability in interannual Atlantic TC activity including zonal wind shear, mid-level moisture, and sea surface temperature (SST), as well as the El Niño–Southern Oscillation (ENSO) and the Atlantic Meridional Mode (AMM), implying confounding effects of these factors on the dust–TC relationship. We find that seasonal Atlantic DAOD and the AMM, the leading mode of coupled Atlantic variability, are inversely related and intertwined in the dust–TC relationship. Overall, DAOD in both the tropical Atlantic and Caribbean is negatively correlated with Atlantic hurricane frequency and intensity, with stronger correlations in the Caribbean than farther east in the tropical North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document