Comparison of different remote sensing methods for glacier mapping in Afghanistan

Author(s):  
Jamal Abdul Naser Shokory ◽  
Stuart Lane

<p>Glaciers are important sources of fresh water particularly in arid regions which have low summer precipitation. Moreover, retreating glaciers can cause serious hazards by destabilizing slopes or causing outbursts of glacial lakes. Therefore glacier monitoring is an essential task for water resources and risk management. Recently, efforts have been made to monitor glaciers using manual or semi-automated remote sensing techniques. However a particular challenge remains: as glaciers retreat they commonly develop a surface debris layer that optically is similar to zones that have not been glaciated or that are truly deglaciated: the debris cover on the glacier surface has a similar reflectance to surrounding moraines in the visible to near-infrared wavelength region. In other hand, where debris cover develops, it may insulate ice from solar radiation and diurnal temperature rises, and this will also reduce melt. Therefore, debris cover on glacier boundaries critically hinders the global inventory of glaciers. To overcome the challenges this study uses a multiple band ratio approach. The method was tested for delineating three glaciers in Afghanistan at different scales and locations to map both clean ice and debris-covered ice. We used Landsat Enhanced Thematic Mapper Plus, and a 5-meter resolution digital surface model DSM data to extract the morphological parameters. Since clean glacier ice has a high reflectivity in the visible to near-infrared wavelengths, at first we used NDIS to extract the clean ice area, but It was found that the NDSI method for glacier mapping is less sensitive to cast shadows and steep terrain. Similarly, a slope parameter has tested to map the debris cover ice area but it did not map areas with gentle slopes correctly.</p><p>Nonetheless, NIR and SWIR were identified as potential candidates for distinguishing between glaciers in shade and clean ice for the debris free case; and a combination of those bands in three different ratios and thresholds was applied successfully (Red/SWIR>= 1.5, Pan/SWIR>0.1, and NIR/SWIR>1). With regards to debris-covered ice the thermal infrared bands show potential in resolving such ambiguity, as considerable temperature differences are found to exist between debris covered ice and surrounding moraines. However, we found that thermal infrared bands have too coarse a resolution (60m) for valley glaciers. Hence, we developed a new band ratio image combining thermal infrared and panchromatic bands to better distinguish periglacial debris and supraglacial debris. This new band ratio image is given by (PAN-TIR)/(PAN+TIR), and is named as normalized supraglacial debris index (NSDI).</p><p>Accuracy assessment was carried out through comparisons of the classified maps with a manual delineation done using 1-meter high resolution RGB image with same temporal resolution. The accuracy assessment shows that the results from the proposed method are in good agreement with the manual delineation. The proposed synergistic approach therefore appears useful in the accurate mapping of debris-covered glaciers in Afghanistan.</p>

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3213 ◽  
Author(s):  
Ghasem Askari ◽  
Amin Pour ◽  
Biswajeet Pradhan ◽  
Mehdi Sarfi ◽  
Fatemeh Nazemnejad

Remote sensing imagery has become an operative and applicable tool for the preparation of geological maps by reducing the costs and increasing the precision. In this study, ASTER satellite remote sensing data were used to extract lithological information of Deh-Molla sedimentary succession, which is located in the southwest of Shahrood city, Semnan Province, North Iran. A robust and effective approach named Band Ratio Matrix Transformation (BRMT) was developed to characterize and discriminate the boundary of sedimentary rock formations in Deh-Molla region. The analysis was based on the forward and continuous division of the visible-near infrared (VNIR) and the shortwave infrared (SWIR) spectral bands of ASTER with subsequent application of principal component analysis (PCA) for producing new transform datasets. The approach was implemented to ASTER spectral band ratios for mapping dominated mineral assemblages in the study area. Quartz, carbonate, and Al, Fe, Mg –OH bearing-altered minerals such as kaolinite, alunite, chlorite and mica were appropriately mapped using the BRMT approach. The results match well with geology map of the study area, fieldwork data and laboratory analysis. Accuracy assessment of the mapping result represents a reasonable kappa coefficient (0.70%) and appropriate overall accuracy (74.64%), which verified the robustness of the BRMT approach. This approach has great potential and capability for mapping sedimentary succession with diverse local–geological–physical characteristics around the world.


2020 ◽  
Vol 12 (18) ◽  
pp. 2937
Author(s):  
Song Cui ◽  
Miaozhong Xu ◽  
Ailong Ma ◽  
Yanfei Zhong

The nonlinear radiation distortions (NRD) among multimodal remote sensing images bring enormous challenges to image registration. The traditional feature-based registration methods commonly use the image intensity or gradient information to detect and describe the features that are sensitive to NRD. However, the nonlinear mapping of the corresponding features of the multimodal images often results in failure of the feature matching, as well as the image registration. In this paper, a modality-free multimodal remote sensing image registration method (SRIFT) is proposed for the registration of multimodal remote sensing images, which is invariant to scale, radiation, and rotation. In SRIFT, the nonlinear diffusion scale (NDS) space is first established to construct a multi-scale space. A local orientation and scale phase congruency (LOSPC) algorithm are then used so that the features of the images with NRD are mapped to establish a one-to-one correspondence, to obtain sufficiently stable key points. In the feature description stage, a rotation-invariant coordinate (RIC) system is adopted to build a descriptor, without requiring estimation of the main direction. The experiments undertaken in this study included one set of simulated data experiments and nine groups of experiments with different types of real multimodal remote sensing images with rotation and scale differences (including synthetic aperture radar (SAR)/optical, digital surface model (DSM)/optical, light detection and ranging (LiDAR) intensity/optical, near-infrared (NIR)/optical, short-wave infrared (SWIR)/optical, classification/optical, and map/optical image pairs), to test the proposed algorithm from both quantitative and qualitative aspects. The experimental results showed that the proposed method has strong robustness to NRD, being invariant to scale, radiation, and rotation, and the achieved registration precision was better than that of the state-of-the-art methods.


Author(s):  
Thomas Mathew

The three-fourth surface of the earth is covered with ocean. The study of the ocean is important for sustainable overall development of a nation and world at large in view of it being rich in resources and playing a crucial role in the climate of the region and changes associated with it. The space-based observations assume significance, as it provides synoptic and repetitive coverage of the ocean in contrast to the sparse and isolated in-situ buoy or ship observations. The remote sensing of the ocean with the help of satellite or satellite oceanography has many other applications also. The electromagnetic radiation in the visible, near infrared, thermal infrared, and microwave regions are used by the sensors on-board space platforms to measure the diverse physical, biological, and geological parameters of the ocean. Amongst the various electromagnetic regions, the microwave region plays an important role in the study of the ocean.


2019 ◽  
Vol 11 (14) ◽  
pp. 1631 ◽  
Author(s):  
Xiaocan Huang ◽  
Jianhua Zhu ◽  
Bing Han ◽  
Cédric Jamet ◽  
Zhen Tian ◽  
...  

Atmospheric correction (AC) for coastal waters is an important issue in ocean color remote sensing. AC performance is fundamental in retrieving reliable water-leaving radiances and then bio-optical parameters. Unlike polar-orbiting satellites, geostationary ocean color sensors allow high-frequency (15–60 min) monitoring of ocean color over the same area. The first geostationary ocean color sensor, i.e., the Geostationary Ocean Color Imager (GOCI), was launched in 2010. Using GOCI data acquired over the Yellow Sea in summer 2017 at three principal overpass times (02:16, 03:16, 04:16 UTC) with ±1 and ±3 h match-up times, this study compared four GOCI AC algorithms: (1) the standard near infrared (NIR) algorithm of NASA (NASA-STD), (2) the Korea Ocean Satellite Center (KOSC) standard algorithm for GOCI (KOSC-STD), (3) the diffuse attenuation coefficient at 490 nm Kd (490)-based NIR correction algorithm (Kd-based), and (4) the Management Unit of the North Sea Mathematical Models (MUMM). The GOCI-estimated remote sensing reflectance (Rrs), aerosol parameters [aerosol optical thickness (AOT), Angström Exponent (AE)], and chlorophyll-a (Chla) were validated using in situ data. For Rrs, AOT, AE, and Chla, GOCI-retrieved results performed well within the ±1 h temporal window, but the number of match-ups was extended within the ±3 h match-up window. For ±3 h GOCI-derived Rrs, all algorithms had an absolute percentage difference (APD) at 490 and 555 nm of <40%, while other bands showed larger differences (APD > 60%). Compared with in situ values, the APD of the Rrs(490)/Rrs(555) band ratio was <20% for all ACs. For AOT and AE, the APD was >40% and >200%, respectively. Of the four algorithms, the KOSC-STD algorithm demonstrated satisfactory performance in deriving Rrs for the region of interest (Rrs APD: 22.23%–73.95%) in the visible bands. The Kd-based algorithm worked well obtaining Ocean Color 3 GOCI Chla because Rrs(443) is more accurate than the KOSC-STD. The poorest Rrs retrievals were achieved using the NASA-STD and the MUMM algorithms. Statistical analysis indicated that all methods had optimal performance at 04:16 UTC.


2021 ◽  
Vol 13 (10) ◽  
pp. 1906
Author(s):  
Ning Ding ◽  
Jianbing Shao ◽  
Changxiang Yan ◽  
Junqiang Zhang ◽  
Yanfeng Qiao ◽  
...  

Cloud and aerosol polarization imaging detector (CAPI) is one of the important payloads on the China Carbon Dioxide Observation Satellite (TANSAT), which can realize multispectral polarization detection and accurate on-orbit calibration. The main function of the instrument is to identify the interference of clouds and aerosols in the atmospheric detection path and to improve the retrieval accuracy of greenhouse gases. Therefore, it is of great significance to accurately identify the clouds in remote sensing images. However, in order to meet the requirement of lightweight design, CAPI is only equipped with channels in the near-ultraviolet to near-infrared bands. It is difficult to achieve effective cloud recognition using traditional visible light to thermal infrared band spectral threshold cloud detection algorithms. In order to solve the above problem, this paper innovatively proposes a cloud detection method based on different threshold tests from near ultraviolet to near infrared (NNDT). This algorithm first introduces the 0.38 μm band and the ratio of 0.38 μm band to 1.64 μm band, to realize the separation of cloud pixels and clear sky pixels, which can take advantage of the obvious difference in radiation characteristics between clouds and ground objects in the near-ultraviolet band and the advantages of the band ratio in identifying clouds on the snow surface. The experimental results show that the cloud recognition hit rate (PODcloud) reaches 0.94 (ocean), 0.98 (vegetation), 0.99 (desert), and 0.86 (polar), which therefore achieve the application standard of CAPI data cloud detection The research shows that the NNDT algorithm replaces the demand for thermal infrared bands for cloud detection, gets rid of the dependence on the minimum surface reflectance database that is embodied in traditional cloud recognition algorithms, and lays the foundation for aerosol and CO2 parameter inversion.


2021 ◽  
Vol 13 (5) ◽  
pp. 860
Author(s):  
Yi-Chun Lin ◽  
Tian Zhou ◽  
Taojun Wang ◽  
Melba Crawford ◽  
Ayman Habib

Remote sensing platforms have become an effective data acquisition tool for digital agriculture. Imaging sensors onboard unmanned aerial vehicles (UAVs) and tractors are providing unprecedented high-geometric-resolution data for several crop phenotyping activities (e.g., canopy cover estimation, plant localization, and flowering date identification). Among potential products, orthophotos play an important role in agricultural management. Traditional orthophoto generation strategies suffer from several artifacts (e.g., double mapping, excessive pixilation, and seamline distortions). The above problems are more pronounced when dealing with mid- to late-season imagery, which is often used for establishing flowering date (e.g., tassel and panicle detection for maize and sorghum crops, respectively). In response to these challenges, this paper introduces new strategies for generating orthophotos that are conducive to the straightforward detection of tassels and panicles. The orthophoto generation strategies are valid for both frame and push-broom imaging systems. The target function of these strategies is striking a balance between the improved visual appearance of tassels/panicles and their geolocation accuracy. The new strategies are based on generating a smooth digital surface model (DSM) that maintains the geolocation quality along the plant rows while reducing double mapping and pixilation artifacts. Moreover, seamline control strategies are applied to avoid having seamline distortions at locations where the tassels and panicles are expected. The quality of generated orthophotos is evaluated through visual inspection as well as quantitative assessment of the degree of similarity between the generated orthophotos and original images. Several experimental results from both UAV and ground platforms show that the proposed strategies do improve the visual quality of derived orthophotos while maintaining the geolocation accuracy at tassel/panicle locations.


2021 ◽  
Vol 13 (11) ◽  
pp. 2045
Author(s):  
Anaí Caparó Bellido ◽  
Bradley C. Rundquist

Snow cover is an important variable in both climatological and hydrological studies because of its relationship to environmental energy and mass flux. However, variability in snow cover can confound satellite-based efforts to monitor vegetation phenology. This research explores the utility of the PhenoCam Network cameras to estimate Fractional Snow Cover (FSC) in grassland. The goal is to operationalize FSC estimates from PhenoCams to inform and improve the satellite-based determination of phenological metrics. The study site is the Oakville Prairie Biological Field Station, located near Grand Forks, North Dakota. We developed a semi-automated process to estimate FSC from PhenoCam images through Python coding. Compared with previous research employing RGB images only, our use of the monochrome RGB + NIR (near-infrared) reduced pixel misclassification and increased accuracy. The results had an average RMSE of less than 8% FSC compared to visual estimates. Our pixel-based accuracy assessment showed that the overall accuracy of the images selected for validation was 92%. This is a promising outcome, although not every PhenoCam Network system has NIR capability.


2021 ◽  
Vol 13 (2) ◽  
pp. 283
Author(s):  
Junzhe Zhang ◽  
Wei Guo ◽  
Bo Zhou ◽  
Gregory S. Okin

With rapid innovations in drone, camera, and 3D photogrammetry, drone-based remote sensing can accurately and efficiently provide ultra-high resolution imagery and digital surface model (DSM) at a landscape scale. Several studies have been conducted using drone-based remote sensing to quantitatively assess the impacts of wind erosion on the vegetation communities and landforms in drylands. In this study, first, five difficulties in conducting wind erosion research through data collection from fieldwork are summarized: insufficient samples, spatial displacement with auxiliary datasets, missing volumetric information, a unidirectional view, and spatially inexplicit input. Then, five possible applications—to provide a reliable and valid sample set, to mitigate the spatial offset, to monitor soil elevation change, to evaluate the directional property of land cover, and to make spatially explicit input for ecological models—of drone-based remote sensing products are suggested. To sum up, drone-based remote sensing has become a useful method to research wind erosion in drylands, and can solve the issues caused by using data collected from fieldwork. For wind erosion research in drylands, we suggest that a drone-based remote sensing product should be used as a complement to field measurements.


Sign in / Sign up

Export Citation Format

Share Document