Design of a neural network aimed at predicting meteotsunamis in Ciutadella harbour (Balearic Islands, Spain)

Author(s):  
Maria-del-Mar Vich ◽  
Romualdo Romero

<p>This work explores the applicability of neural networks (NN) for forecasting atmospherically-driven tsunamis affecting Ciutadella harbor in Menorca (Balearic Islands). These meteotsunamis can lead to wave heights around 1 m, and several episodes in the modern history have reached 2-4 m with catastrophic consequences. A timely and skilled prediction of these phenomena could significantly help to mitigate the damages inflicted to the port facilities and moored vessels. We examine the relevant physical mechanisms that promote meteotsunamis in Ciutadella harbour and choose the input variables of the NN accordingly. Two different NNs are devised and tested: a dry and wet scheme. The difference between schemes resides on the input layer; while the first scheme is exclusively focused on the triggering role of atmospheric gravity waves (governed by temperature and wind profiles across the tropospheric column), the second scheme also incorporates humidity as input information with the purpose of accounting for the occasional influence of moist convection. We train both NNs using resilient backpropagation with weight backtracking method. Their performance is tested by means of classical deterministic verification indexes. We also compare both NN results against the performance of a substantially different prognostic method that relies on a sequence of atmospheric and oceanic numerical simulations. Both NN schemes show a skill comparable to that of computationally expensive approaches based on direct numerical simulation of the physical mechanisms. The expected greater versatility of the wet scheme over the dry scheme cannot be clearly proved owing to the limited size of the training database. The results emphasize the potential of a NN approach and open a clear path to an operational implementation, including probabilistic forecasting strategies.</p>

2021 ◽  
Vol 11 (9) ◽  
pp. 4251
Author(s):  
Jinsong Zhang ◽  
Shuai Zhang ◽  
Jianhua Zhang ◽  
Zhiliang Wang

In the digital microfluidic experiments, the droplet characteristics and flow patterns are generally identified and predicted by the empirical methods, which are difficult to process a large amount of data mining. In addition, due to the existence of inevitable human invention, the inconsistent judgment standards make the comparison between different experiments cumbersome and almost impossible. In this paper, we tried to use machine learning to build algorithms that could automatically identify, judge, and predict flow patterns and droplet characteristics, so that the empirical judgment was transferred to be an intelligent process. The difference on the usual machine learning algorithms, a generalized variable system was introduced to describe the different geometry configurations of the digital microfluidics. Specifically, Buckingham’s theorem had been adopted to obtain multiple groups of dimensionless numbers as the input variables of machine learning algorithms. Through the verification of the algorithms, the SVM and BPNN algorithms had classified and predicted the different flow patterns and droplet characteristics (the length and frequency) successfully. By comparing with the primitive parameters system, the dimensionless numbers system was superior in the predictive capability. The traditional dimensionless numbers selected for the machine learning algorithms should have physical meanings strongly rather than mathematical meanings. The machine learning algorithms applying the dimensionless numbers had declined the dimensionality of the system and the amount of computation and not lose the information of primitive parameters.


Author(s):  
Christopher A. Davis

Abstract The Sierras de Córdoba (SDC) mountain range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly LLJ, and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using CM1. The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. Thesimulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.


2011 ◽  
Vol 1 (7) ◽  
pp. 3
Author(s):  
P. W. Roest

The dimensions of the dikes in the Ijsselmeer are mainly determined by wave-attack. The dimensions of the waves as a result of the design gale are calculated with the diagram of the Hydraulics Laboratory at Delft (ref« 1). This diagram is based on data of Sverdrup for deep water and principally on laboratory studies for shallow water. For a long time there has been a need of wave recordings on the lake in order to verify the calculated wave heights. A problem is the impossibility of maintaining a permanent recording station on the lake due to ice-drift in wintertime. Otherwise the Ijsselmeer lends itself admirably to wave-research, because there are vast regions with only small variations in waterdepth. Another advantage is that frequently more or less stationary conditions will occur under the influence of winds of constant force and direction. When Dr. Dorrestein of the Royal Dutch Meteorological Institute introduced his new floating waverecorder, it was possible to take observations in every place of the lake. Soon it appeared that this recorder has many advantages. The equipment consists of an accelerometer mounted on a little raft of one meter each way, that follows the movement of the water surface. The signal of the accelerometer is transmitted by an electric cable to the ship, where it is double integrated and then recorded (ref. 3). During the last winter several observations have been carried out with an instrument of this type* As a result of initial troubles with the electronic equipment the number of observations during gale-conditions has been limited. The usual duration of each recording is about 15 minutes. The average period of the waves lies between three and a half and five seconds, so each diagram consists of 180 to 250 waves. Wave height is measured as the difference in height between a trough and the next crest. The average period is determined by dividing the total recording time by half the number of zerocrossings.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Hanah Khoirunnisa ◽  
Mardi Wibowo ◽  
Wahyu Hendriyono ◽  
Khusnul Setia Wardani

The flight test of N219 Amphibious aircraft will be targeted in 2003/2024. For flight tests, these aircraft need a seaplane dock. One of the potential locations for the seaplane dock is Panjang Island at Seribu Islands. This study aims to know the characteristic of hydrodynamic and wave conditions and to determine whether Panjang Island is suitable for the seaplane dock. This study uses a modeling method with MIKE 21 FM HD-SW module and MIKE 21 Boussinesq Wave (BW)  module. The bathymetry data were obtained from the Indonesian Navy Hydrographic and Oceanographic Center (Pushidrosal), tide data is generated from Tide Model Driver (TMD), wave and wind data from ECMWF. The result of surface elevation validation between hydrodynamic modeling and TMD is 92%. During the west monsoon and spring conditions, the difference in the largest and lowest current velocity is quite large (0.018-0.199 m/s), on the other hand, when the tides are in neap conditions (0.008-0.144 m/s). Meanwhile, during the east monsoon and spring conditions, the difference in the largest and lowest current velocities is quite large (0.02-0.193 m/s), on the other hand, when the tides are in neap conditions (0.008-0.146 m/s). The maximum wave height resulting from the 50-year return period waveform modeling between 1.139 - 1.474 m. Meanwhile, the significant wave heights between 0.679 - 0.741 with a significant wave period of 13.45 seconds. In general, the current and wave conditions of the two locations are suitable for the construction of the seaplane dock, except that the dominant wave heights are still above the requirements.


2011 ◽  
Vol 1 (32) ◽  
pp. 18
Author(s):  
Tomoya Shibayama

Field surveys were performed in the southwest of Bangladesh after cyclone Sidr in 2007 and in Yangon River Basin after Cyclone Nargis in Myanmar in 2008 in order to learn lessons out of severe disasters due to cyclones. Spatial distributions of inundation heights were measured around the most damaged areas. Both Bangladesh and Myanmar were severely damaged, but the preparedness against storm surge and the experiences were different. The resultant total losses in these two countries were significantly different. In Bangladesh, many people witnessed that storm surges inundated with bore-like waves. Counter measured against storm surges should account for the physical mechanisms for the development of such bore-like waves and possible damages due to such waves. Embankment showed significant roles to minimize the damage. Development of riverbanks especially around the river mouth is one of most essential counter-measures to be carried out in Bangladesh. Shelter functioned well to save significant number of lives in Bangladesh. But in Myanmar, there were few experiences on storm surge and no countermeasures such as shelters. These differences results the difference of losses. They were 4,232 including deaths and unknowns in Bangladesh but 138,373 in Myanmar.


2008 ◽  
Vol 8 (3) ◽  
pp. 533-537 ◽  
Author(s):  
L. Bertotti ◽  
L. Cavaleri

Abstract. On 14 February 2005 a severe mistral storm caused substantial damage to the passenger cruiser "Voyager" between Balearic Islands and Sardinia. The storm had been well predicted. However, the ship was hit by one or more, apparently unexpected, large waves. Our aim was to understand if this was a freak event or it was within the expectable probability. At this aim we use our best estimate of the local wave conditions, obtained combining modelling and measured data. Starting from these we derive the probability of large waves, considering both linear and non-linear cases. Notwithstanding a correction towards the worse of the, otherwise inconsistent, available reports, on the basis of the data at disposal we conclude that, given the local conditions, the event was within the range of the potentially expectable wave heights. This turns out to be even more the case on the basis of recent results based on theoretical and experimental data.


2020 ◽  
Vol 1 (1) ◽  
pp. 31-44
Author(s):  
Sergii Panasenko ◽  
Dmytro Kotov ◽  
Taras Zhivolup ◽  
Olexander Koloskov ◽  
Volodymyr Lisachenko

Based on the results of simultaneous ionosonde observations during low solar and weak magnetic activities, a coupling was found between diurnal and quasi-periodic variations in ionospheric parameters over magnetically conjugated regions, where the Ukrainian Antarctic Station (UAS) and Millstone Hill Observatory are located. A significant impact of the summer hemisphere on the nighttime variations of the F2 layer critical frequency foF2 in the magnetically conjugated region in the winter hemisphere was found. The most characteristic manifestation of this impact is the control of foF2 variations over the UAS not by the local sunset (sunrise), but by the sunset (sunrise) over Millstone Hill. It was found that the sunset over Millstone Hill leads to an increase in foF2 over the UAS, while the sunrise leads to a decrease in foF2 with a subsequent sharp increase. Both phenomena are associated with changes in the photoelectron flux from the northern hemisphere, corresponding changes in the electron temperature in the ionosphere above the UAS and the effect of these changes on the compression or rarefaction of the ionospheric plasma and changes in the plasmaspheric fluxes of H + ions. It was shown that the transition from nighttime to daytime conditions over both observation points was characterized by a significant decrease in the F2 layer peak height, and the difference in the values of this ionospheric parameter over Millstone Hill and UAS at night is due to seasonal differences in the thermospheric circulation and the difference in the behavior of the ionospheric parameters in the Northern and Southern hemispheres. Manifestations of atmospheric gravity waves, caused by the passage of local sunrise terminators, as traveling ionospheric disturbances with periods of about 90 and 75 – 120 mins over Millstone Hill and UAS, respectively, were found. These waves were most likely generated in the region located between the ionospheric F1 and F2 layers, where the sharp gradients in the electron and ion densities occur during changes in the intensity of solar radiation. It is confirmed that wave disturbances in atmospheric and ionospheric parameters can be transferred between magnetically conjugated regions by slow magnetohydrodynamic waves generated both at the heights of the ionospheric dynamo region due to the modulation of atmospheric and ionospheric parameters by atmospheric waves and the occurrence of external currents, and at the top of the plasmaspheric tube, where sharp plasma compression and heating or rarefaction and cooling occur during the passage of the solar terminator. Keywords: the ionosphere, F2 region, ionosonde measurements, geomagnetic field tube, magnetoconjugate region coupling, atmospheric gravity waves, traveling ionospheric disturbances, generation of slow magnetohydrodynamic waves


2020 ◽  
Vol 26 (3) ◽  
pp. 55-80
Author(s):  
G.V. Lizunov ◽  
◽  
T.V. Skorokhod ◽  
V.Ye. Korepanov ◽  
◽  
...  

2021 ◽  
Author(s):  
Soumyajyoti Jana ◽  
Gargi Rakshit ◽  
Animesh Maitra

Abstract The elevated layer of heat-absorbing pollutant aerosols causes temperature perturbations in the pre-monsoon period above the boundary layer height (1.6-4 km) as observed over a polluted tropical urban location Kolkata (22°34' N, 88°22' E) during 2007-2016. Satellite observations of different types of aerosols show an increase in aerosol extinction coefficient around 1.6-4 km altitude, enhancing the perturbations in both temperature and wind profiles at that height. The opposing air mass movement within and above the boundary layer, which is strengthened by elevated heat-absorbing aerosols, is illustrated by height profiles of atmospheric vorticity and divergence. This results in higher Brunt-Vaisala frequencies indicating increased atmospheric oscillations. Consequently, atmospheric gravity waves, which manifest the temperature and wind profile perturbations, have enhanced energy in the upper troposphere (6-10 km). Based on multi- technique observations consisting of radiosonde, space-borne lidar and model data, this study reveals the interactions between aerosol and other atmospheric processes such as temperature variations and wind perturbations, which affect the atmospheric instability and increase gravity wave activities during the pre-monsoon period over a tropical metropolis.


1976 ◽  
Vol 1 (15) ◽  
pp. 147 ◽  
Author(s):  
Charles K. Sollitt ◽  
Donald H. Debok

Large scale model studies reveal that Reynolds scaling can affect the apparent stability and wave modifying properties of layered breakwater structures. Results of a study for a breakwater configuration designed to protect offshore power and port facilities in water depths to 60 feet are presented and discussed. The armor layer of this structure is formed from quarried rock of irregular rectangular parallelepiped shape, individually placed perpendicular to 1:2 seaward slope and crest. The resulting armor layer is relatively smooth, densely packed and very stable. Model studies of similar configurations were studied at 1:10, 1:20 and 1:100 scale ratios. Stability, runup, rundown and reflection were measured for a variety of water depths, wave heights and periods. Analysis of the large scale test results establish that the placed stone armor is approximately as stable as dolos armor units. Runup, rundown and reflection respond similar to rough, impermeable slopes. Comparison of large and small scale results demonstrate that relative increases in drag forces at lower Reynolds numbers decrease stability and runup in small scale models.


Sign in / Sign up

Export Citation Format

Share Document