The influence of soil fertility on carbon cycling and storage in temperate tree bioenergy crops

Author(s):  
Leigh-Anne Kemp

<p>LA Kemp, Supervisors: A. Karley, A. Bennett, A. Taylor, N. McNamara, E.J Sayer</p><p>Short – rotation woody perennials such as Populus and Salix are often selected for bioenergy crops in temperate climates. In conjunction with providing a renewable crop, bioenergy crops can improve carbon storage in previously degraded soils and associate with beneficial mycorrhizal fungi. Applying nitrogen fertilizers to bioenergy crops can increase yield and carbon sink but may also increase CO2 emissions through increased soil respiration and N2O through increased microbial activity which alter population and community dynamics.</p><p>Changing environmental conditions due to climate change such as prolonged droughting and increasing intensity of rewetting are also impacting plant-soil interactions. However, there are gaps in the understanding of the mechanisms responsible for plant responses to changing abiotic conditions. Therefore, the scale of future carbon cycling, CH4 and N2O emissions by temperate tree species are still very unclear.</p><p>To address this my experiment, focuses on two temperate tree species used in bioenergy production known to associate with mycorrhizal fungi. The study will run over two growing seasons, using a randomized block design with four fungal treatments, four nutrient treatments and then implementing two abiotic treatments during the second growing season. I aim to determine how soil nutrient availability influences: i) plant – mycorrhiza associations, ii) plant carbon cycling and storage, iii) soil respiration rates, iv) plant and soil GHG emission rates. v) carbon cycling and GHG emissions under different climate controls.</p>

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 402
Author(s):  
Rama Kant Dubey ◽  
Pradeep Kumar Dubey ◽  
Rajan Chaurasia ◽  
Ch Srinivasa Rao ◽  
Purushothaman Chirakkuzhyil Abhilash

Global agricultural production is accountable for the emission of ~30% of greenhouse gases. Therefore, the wide-scale adoptions of low-input, soil-friendly, and resource-conserving agronomic practices are imperative for the ‘planet healthy food production’ and also for reducing the carbon emissions from agricultural soil. In this context, the present study aimed to analyze the impacts of integrated agronomic interventions i.e., the application of arbuscular mycorrhizal fungi (AMF) + reduced tillage (RT), biochar + RT, and AMF + biochar + RT, on spatiotemporal variations in soil-quality and soil-sustainability indicators, including microbial and soil respiration, in the Indo-Gangetic Plain (IGP) of North India. For this, field experiments on the above-mentioned agronomic interventions were employed using three different staple crops (Zea mays, Vigna mungo, and Brassica juncea) growing in three different agro-climatic zones of IGP (Varanasi, Sultanpur, and Gorakhpur) in a randomized block design. Periodic data collection was done to analyze the changes in physiochemical, biological, and biochemical properties of the soil, and statistical analyses were done accordingly. Irrespective of the sites, the experimental results proved that the integrated application of AMF + biochar + RT in V. mungo resulted in the highest soil organic carbon (i.e., 135% increment over the control) and microbial biomass carbon (24%), whereas the same application (i.e., AMF + biochar + RT) in Z. mays had the maximum reduction in microbial (32%) and soil (44%) respiration. On the other hand, enhanced occurrence of glomalin activity (98%) was noted in Z. mays cropping for all the sites. Significant negative correlation between soil respiration and glomalin activity under AMF + biochar + RT (−0.85), AMF + RT (−0.82), and biochar + RT (−0.62) was an indication of glomalin’s role in the reduced rate of soil respiration. The research results proved that the combined application of AMF + biochar + RT was the best practice for enhancing soil quality while reducing respiration. Therefore, the development of suitable packages of integrated agronomic practices is essential for agricultural sustainability.


Author(s):  
Yoná Serpa Mascarenhas ◽  
Mellissa Ananias Soler da Silva ◽  
Vládia Correchel ◽  
Alberto Baêta dos Santos ◽  
Márcia Thaís de Melo Carvalho ◽  
...  

Abstract: The objective of this work was to evaluate the effects of nitrogen fertilizers on the N dynamics and grain yield in flooded rice (Oryza sativa) cultivation in Brazilian tropical wetland. The experiment was carried out in a randomized complete block design with six treatments, as follows: common and protected urea; topdressing application of N doses (30, 70, and 150 kg ha-1); and one control treatment, without N fertilization. Emissions of N2O-N, global warming potential (pGWP), emission factors (EF) for mineral fertilizers, grain yield, emission intensity, nitrate, ammonium, pH, and potential redox were quantified. Gas sampling was carried out in two crop seasons of rice cultivation and in one off-season. During the flooded period of the two crop seasons, N2O fluxes did not exceed 862.41 μg m-2 h-1 N2O-N; in the off-season, the fluxes varied from -52.95 to 274.34 μg m-2 h-1 N2O-N. Consistent emission peaks were observed in soil draining before harvest, when the highest rate of both N sources was used, and also in the control treatment in the off-season. Protected urea does not reduce N2O emissions or EF. Nitrogen increases the grain yield. Protected urea does not have any effect on the pGWP. The concentrations of NO3- and NH4+ in the soil are not related to N2O fluxes.


Author(s):  
Jason LeBlanc

Climate change and energy security issues have made renewable energy production an important global issue. Bioenergy crops may be able to provide a large amount of the world’s energy needs; therefore it is important to determine their potential for viable and sustainable use. Perennial grasses are an ideal bioenergy crop because they grow quickly across a wide range of climatic and soil conditions. Nitrogen based fertilizers are often used to increase productivity but overuse can lead to excessive nitrous oxide (N2O) emissions, a greenhouse gas (GHG) 300 times more potent that carbon dioxide (CO2). Fertilizing becomes counterproductive when N2O emissions outweigh the benefit gained from reduction in CO2 emissions.      Three perennial grass species (Panicumr virgatum, Schizachyrium scoparium and Andropogon gerardii) were grown in collaboration with Lafarge Cement in Bath, Ontario. Each species was grown under three different fertilization regimes: 0, 50 and 150 lbs/acre of nitrogen as urea. Results of one study indicate that low levels of fertilizer addition enhance the GHG benefits of the grass, but results from another site suggest no benefit.       Our current research is exploring the importance of various soil processes to production of GHG’s in these perennial grass bioenergy systems, and whether the grasses alter soil conditions to favor certain soil processes. The information gained will help to further predict the feasibility of using nitrogen fertilizers to enhance production in these bioenergy systems and the overall viability of bioenergy crops for cement manufacturing and other applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 13 (6) ◽  
pp. 3563
Author(s):  
Marianthi Tsakaldimi ◽  
Panagiota Giannaki ◽  
Vladan Ivetić ◽  
Nikoleta Kapsali ◽  
Petros Ganatsas

Pinus nigra is one of the most widely used tree species for reforestation within its geographical distribution, as well as being a potential substitute for other tree species in Central Europe under future climate scenarios. P. nigra is transplanted into the field as two-year or three-year old seedlings because of its relatively low growth rate in the nursery. This study investigated the effects of fertilization programs and shading on P. nigra seedlings, aiming to accelerate early growth, and thus to reduce the nursery rearing time. The experiment (a completely randomized block design) was conducted in an open-air nursery by sowing seeds from Grevena, Northern Greece, in Quick pots filled with peat and perlite in a 2:1 ratio. The seedlings were subjected to two levels of fertilization—5 and 10 g L−1 NPK (30-10-10)—and two shading levels: 50% and 70%. At the ends of the first and second nursery growing season, we recorded the seedlings’ above- and below-ground morphology and biomass data. The results show that the application of all of the treatments produced seedlings which met the targeted quality standards for outplanting. However, the combination of a high fertilization rate and low shading level resulted in seedlings of a higher morphological quality, which is often considered to be an indicator for a successful seedling establishment in the field.


2021 ◽  
Vol 7 (7) ◽  
pp. 571
Author(s):  
Dilfuza Jabborova ◽  
Kannepalli Annapurna ◽  
Sangeeta Paul ◽  
Sudhir Kumar ◽  
Hosam A. Saad ◽  
...  

Biochar and arbuscular mycorrhizal fungi (AMF) can promote plant growth, improve soil properties, and maintain microbial activity. The effects of biochar and AMF on plant growth, root morphological traits, physiological properties, and soil enzymatic activities were studied in spinach (Spinacia oleracea L.). A pot experiment was conducted to evaluate the effect of biochar and AMF on the growth of spinach. Four treatments, a T1 control (soil without biochar), T2 biochar alone, T3 AMF alone, and T4 biochar and AMF together, were arranged in a randomized complete block design with five replications. The biochar alone had a positive effect on the growth of spinach, root morphological traits, physiological properties, and soil enzymatic activities. It significantly increased the plant growth parameters, such as the shoot length, leaf number, leaf length, leaf width, shoot fresh weight, and shoot dry weight. The root morphological traits, plant physiological attributes, and soil enzymatic activities were significantly enhanced with the biochar alone compared with the control. However, the combination of biochar and AMF had a greater impact on the increase in plant growth, root morphological traits, physiological properties, and soil enzymatic activities compared with the other treatments. The results suggested that the combined biochar and AMF led to the highest levels of spinach plant growth, microbial biomass, and soil enzymatic activity.


2021 ◽  
Author(s):  
Robert Reuter ◽  
Olga Ferlian ◽  
Mika Tarkka ◽  
Nico Eisenhauer ◽  
Karin Pritsch ◽  
...  

Abstract Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species´ mycorrhizal association, but their uptake rather depended on the competitor indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association, but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.


2017 ◽  
Vol 114 (24) ◽  
pp. 6322-6327 ◽  
Author(s):  
Christine V. Hawkes ◽  
Bonnie G. Waring ◽  
Jennifer D. Rocca ◽  
Stephanie N. Kivlin

Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.


Sign in / Sign up

Export Citation Format

Share Document