Characterization of extreme meteo-hydrological events in the Alpine Region: historical picture and future scenarios

Author(s):  
Matteo Pesce ◽  
Larisa Tarasova ◽  
Ralf Merz ◽  
Jost von Hardenberg ◽  
Alberto Viglione

<p>In the European Alps, climate change has determined changes in extreme precipitation and river flood events, which impact the population living downstream with increasing frequency. The objectives of our work are:</p><ol><li>to determine what types of precipitation extremes and river flood events occur in the Alpine Region, based on their generating mechanisms (e.g., frontal convergence storms, convective storms, snow-melt floods, rain-on-snow floods, short and long rain floods, flash floods, ...)</li> <li>to determine the spatial and seasonal distribution of these event types (e.g., their dependence on elevation, geographical location, catchment size, ...) and how precipitation extremes relate to the floods they produce (e.g., the role of snow precipitation and accumulation)</li> <li>to determine whether the event type distribution is changing and will change in the future (e.g., due to climate change).  </li> </ol><p>To these aims, we will compile and analyze historical time series of precipitation and discharge in order to identify events in terms of intensity, duration, and spatial extent. We will use the ETCCDI indices as a measure of the precipitation distribution and hydrograph separation techniques for flow events, following the methodology of Tarasova et al. (2018). We will then characterize each event in terms of generation mechanisms. Furthermore, we will analyze the frequency and magnitude of the different event types in different locations and time of the year and determine whether clusters exist by applying automatic techniques (e.g. K-means clustering algorithm). Finally, we will correlate statistics of precipitation and flood event types with climate indices related to large scale atmospheric circulation, such as Atmospheric Blocking, NAO, etc. (Ciccarelli et al. 2008). Results will be then used for the projection of future storm and flood scenarios.</p><p>We will first apply the methodology in Piedmont by comparing the station-based time series with the NWIOI dataset (ARPA Piemonte) and reanalysis datasets by ECMWF (ERA5, ERA5-Land). We will use a rainfall-runoff model at the daily and sub-daily timescale, through calibration at the regional scale, useful for the simulation of soil saturation and snowpack. We expect to find a statistical correlation between the different datasets, but with changing statistical features over space and time within the single datasets. We aim to provide a detailed picture of the different types of events according to the spatial location and season. The results will be useful, from a scientific perspective, to better understand storm and flood regimes and their change in the Alpine Region, and, from a practical perspective, to better mitigate the risk associated with the occurrence of extreme events.      </p><p>Ciccarelli, N., Von Hardenberg, J., Provenzale, A., Ronchi, C., Vargiu, A., & Pelosini, R. (2008). Climate variability in north-western Italy during the second half of the 20th century. Global and Planetary Change, 63(2-3), 185-195. https://doi.org/10.1016/j.gloplacha.2008.03.006</p><p>Tarasova, L., Basso, S., Zink, M., & Merz, R. (2018). Exploring controls on rainfall-runoff events: 1. Time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resources Research, 54, 7711–7732. https://doi.org/10.1029/2018WR022587</p>

2021 ◽  
Author(s):  
Felix Greifeneder ◽  
Klaus Haslinger ◽  
Georg Seyerl ◽  
Claudia Notarnicola ◽  
Massimiliano Zappa ◽  
...  

<p>Soil Moisture (SM) is one of the key observable variables of the hydrological cycle and therefore of high importance for many disciplines, from meteorology to agriculture. This contribution presents a comparison of different products for the mapping of SM. The aim was to identify the best available solution for the operational monitoring of SM as a drought indicator for the entire area of the European Alps, to be applied in the context of the Interreg Alpine Space project, the Alpine Drought Observatory.</p><p>The following datasets were considered: Soil Water Index (SWI) of the Copernicus Global Land Service [1]; ERA5 [2]; ERA5-Land [3]; UERRA MESCAN-SURFEX land-surface component [4]. All four datasets offer a different set of advantages and disadvantages related to their spatial resolution, update frequency and latency. As a reference, modelled SM time-series for 307 catchments in Switzerland were used [5]. Switzerland is well suited as a test case for the Alps, due to its different landscapes, from lowlands to high mountain.</p><p>The intercomparison was based on a correlation analysis of daily absolute SM values and the daily anomalies. Furthermore, the probability to detect certain events, such as persistent dry conditions, was evaluated for each of the SM datasets. First results showed that the temporal dynamics (both in terms of absolute values as well as anomalies) of the re-analysis datasets show a high correlation to the reference. A clear gradient, from the lowlands in the north to the high mountains in the south, with decreasing correlation is evident. The SWI data showed weak correlations to the temporal dynamics of the reference in general. Especially, during spring and the first part of the summer SM is significantly underestimated. This might be related to the influence of snowmelt, which is not taken into account in the two-layer water balance model used to model SM for deeper soil layers. Low coverage in the high mountain areas hampered a thorough comparison with the reference in these areas.</p><p>The results presented here are the foundation for selecting a suitable source for the operational mapping of SM for the Alpine Drought Observatory. The next steps will be to test the potential of MESCAN-SURFEX and ERA5-Land for the downscaling of ERA5 to take advantage of the low latency of ERA5 and the improved spatial detail of the other two datasets.  </p><p>Literature:</p><p>[1]  B. Bauer-marschallinger et al., “Sentinel-1 : Harnessing Assets and Overcoming Obstacles,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 520–539, 2019, doi: 10.1109/TGRS.2018.2858004.</p><p>[2]  H. Hersbach et al., “ERA5 hourly data on single levels from 1979 to present.” Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018.</p><p>[3]  Copernicus Climate Change Service, “ERA5-Land hourly data from 2001 to present.” ECMWF, 2019, doi: 10.24381/CDS.E2161BAC.</p><p>[4]  E. Bazile, et al., “MESCAN-SURFEX Surface Analysis. Deliverable D2.8 of the UERRA Project,” 2017. Accessed: Jan. 11, 2020. [Online]. Available: http://www.uerra.eu/publications/deliverable-reports.html.</p><p>[5]  Brunner, et al.: Extremeness of recent drought events in    Switzerland: dependence on variable and return period choice, Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.</p>


2021 ◽  
pp. 354-359
Author(s):  
Franz Rubel

Abstract Tick-borne encephalitis (TBE) is a viral tick-borne disease. The distribution of human TBE cases ranges from the French departments bordering Germany through Central and Eastern Europe, the Caucasus and Kazakhstan to the Far East of Russia and China. In this expert opinion, TBE is described in the greater area of the European Alps, denoted as the Greater Alpine Region (GAR). It also includes reported tick-borne encephalitis cases and evidence for climate change impacts on tick density and distribution as well as the prevalence and intensity of TBE.


Author(s):  
Michael Kuhn ◽  
Marc Olefs

Elevation-dependent climate change has been observed in the European Alps in the context of global warming and as a consequence of Alpine orography. It is most obvious in elevation-dependent warming, conveniently defined as the linear regression of the time series of temperatures against elevation, and it reaches values of several tenths of a degree per 1,000 m elevation per decade. Observed changes in temperature have forced changes in atmospheric pressure, water vapor, cloud condensation, fluxes of infrared and solar radiation, snow cover, and evaporation, which have affected the Alpine surface energy and water balance in different ways at different elevations. At the same time, changes in atmospheric aerosol optical depth, in atmospheric circulation, and in the frequency of weather types have contributed to the observed elevation-dependent climate change in the European Alps. To a large extent, these observations have been reproduced by model simulations.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Norhan Abd Rahman ◽  
Zulkifli Yusop ◽  
Zekai Şen ◽  
Saud Taher ◽  
Ibrahim Lawal Kane

Rainfall record plays a significant role in assessment of climate change, water resource planning and management. In arid region, studies on rainfall are rather scarce due to intricacy and constraint of the available data. Most available studies use more advanced approaches such as A2 scenario, General Circulation Models (GCM) and the like, to study the temporal dynamics and make projection on future rainfall. However, those models take no account of the data patterns and its predictability. Therefore, this study uses time series analysis methodologies such as Mann- Kendall trend test, de-trended fluctuation analysis and state space time series approaches to study the dynamics of rainfall records of four stations in and around Wadi Al-Aqiq, Kingdom of Saudi Arabia (KSA). According to Mann-Kendall trend test there are decreasing trend in three out of the four stations. The de-trended fluctuation analysis revealed two distinct scaling properties that spells the predictability of the records and confirmed by state space methods. 


Author(s):  
Andreas Gobiet ◽  
Sven Kotlarski

The analysis of state-of-the-art regional climate projections indicates a number of robust changes of the climate of the European Alps by the end of this century. Among these are a temperature increase in all seasons and at all elevations and a significant decrease in natural snow cover. Precipitation changes, however, are more subtle and subject to larger uncertainties. While annual precipitation sums are projected to remain rather constant until the end of the century, winter precipitation is projected to increase. Summer precipitation changes will most likely be negative, but increases are possible as well and are covered by the model uncertainty range. Precipitation extremes are expected to intensify in all seasons. The projected changes by the end of the century considerably depend on the greenhouse-gas scenario assumed, with the high-end RCP8.5 scenario being associated with the most prominent changes. Until the middle of the 21st century, however, it is projected that climate change in the Alpine area will only slightly depend on the specific emission scenario. These results indicate that harmful weather events in the Alpine area are likely to intensify in future. This particularly refers to extreme precipitation events, which can trigger flash floods and gravitational mass movements (debris flows, landslides) and lead to substantial damage. Convective precipitation extremes (thunderstorms) are additionally a threat to agriculture, forestry, and infrastructure, since they are often associated with strong wind gusts that cause windbreak in forests and with hail that causes damage in agriculture and infrastructure. Less spectacular but still very relevant is the effect of soil erosion on inclined arable land, caused by heavy precipitation. At the same time rising temperatures lead to longer vegetation periods, increased evapotranspiration, and subsequently to higher risk of droughts in the drier valleys of the Alps. Earlier snowmelt is expected to lead to a seasonal runoff shift in many catchments and the projected strong decrease of the natural snow cover will have an impact on tourism and, last but not least, on the cultural identity of many inhabitants of the Alpine area.


2021 ◽  
Author(s):  
Caroline Legrand ◽  
Benoît Hingray ◽  
Bruno Wilhelm

<p>Floods are highly destructive natural hazards causing widespread impacts on socio-ecosystems. This hazard could be further amplified with the ongoing climate change, which will likely alter magnitude and frequency of floods. Estimating how flood regimes could change in the future is however not straightforward. The classical approach is to estimate future hydrological regimes from hydrological simulations forced by time series scenarii of weather variables for different future climate scenarii. The development of relevant weather scenarii for this is often critical. To be adapted to the critical space and time scales of the considered basins, weather scenarii are thus typically produced from climate models with downscaling models (either dynamic or statistical).</p><p>In this study, we aim to evaluate the capacity of such a simulation chain to reproduce floods observed in the upper Rhône River (10900 km², European Alps) over the last century. The modeling chain is made up of (i) the atmospheric reanalysis ERA-20C (1900-2010), (ii) the statistical downscaling model Analog, and (iii) the glacio-hydrological model GSM-SOCONT (Glacier and Snowmelt SOil CONTribution model; Schaefli et al., 2005). To assess the performance of this modeling chain, the simulated scenarii of mean areal precipitation and temperature are compared to the observed time series over the common period (1961-2010), whereas the discharge scenarii are compared to the reference time series (1920-2010).</p><p>In this presentation, we will discuss (i) the results obtained by the basic Analog method, namely a flood events underestimation due to an underestimation of extreme precipitation values, in particular 3-day and 5-day extreme precipitation, and (ii) the enhanced results obtained by the improved version of Analog SCAMP (Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions; Raynaud et al., 2020) combined to the Schaake Shuffle method.</p><p>References:</p><p>Schaefli, B., Hingray, B., M. Niggli, M., Musy, A. (2005). A conceptual glacio-hydrological model for high mountainous catchments. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 9, 95-109.</p><p>Raynaud, D., Hingray, B., Evin, G., Favre, A.-C., Chardon, J. (2020). Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 24(9), 4339-4352.</p>


2020 ◽  
Author(s):  
Nikta Madjdi ◽  
Katharina Enigl ◽  
Christoph Matulla

<p><span>Floodings are amongst the most devastating damage-processes worldwide. Along with the increase in climate change induced extreme events, research devoted to the identification of so-called Climate Indices (CIs) describing weather phenomena triggering hazard-occurrences gains rising emphasis. CIs have a wide potential for further investigation in both research and application as e.g. in public protection and the transport and logistic industry. The appearance of specific CIs in regional climate models (i.e., ‘hazard development corridors’) can serve as an input in decision-theoretic concepts aiming to sustain current safety levels in climate change induced altering risk landscapes (Matulla et al, submitted). Enigl et al, 2019 first objectively derived hazard-triggering precipitation totals for six process-categories and three climatologically as well as geomorphologically distinct regions in the Austrian part of the European Alps.  This study aims at investigating a slightly different methodological approach for the objective determination of Climate Indices in the catchment area of the River Danube in Austria depending on catchment areas. </span></p>


2013 ◽  
Vol 7 (3) ◽  
pp. 3001-3042 ◽  
Author(s):  
F. Hüsler ◽  
T. Jonas ◽  
M. Riffler ◽  
J. P. Musial ◽  
S. Wunderle

Abstract. Seasonal snow cover is of great environmental and socio-economic importance for the European Alps. Therefore a high priority has been assigned to quantifying its temporal and spatial variability. Complementary to land-based monitoring networks, optical satellite observations can be used to derive spatially comprehensive information on snow cover extent. For understanding long-term changes in alpine snow cover extent, the data acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensors mounted onboard the National Oceanic and Atmospheric Association (NOAA) and Meteorological Operational satellite (MetOp) platforms offer a~unique source of information. In this paper, we present the first space-borne 1 km snow extent climatology for the Alpine region derived from AVHRR data over the period 1985–2011. The objective of this study is twofold: first, to generate a new set of cloud-free satellite snow products using a specific cloud gap-filling technique and second, to examine the spatiotemporal distribution of snow cover in the European Alps over the last 27 yr from the satellite perspective. For this purpose, snow parameters such as snow onset day, snow cover duration (SCD), melt-out date and the snow cover area percentage (SCA) were employed to analyze spatio-temporal variability of snow cover over the course of 3 decades. On the regional scale, significant trends were found toward a shorter SCD at lower elevations in the south-east and south-west. However, our results do not show any significant trends in the monthly mean SCA over the last 27 yr. This is in agreement with other research findings and may indicate a~deceleration of the decreasing snow trend in the Alpine region. Given the importance of mountain regions for climate change assessment, this study recommends the complementary use of remote sensing data for long-term snow applications. It bears the potential to provide spatially and temporally comprehensive snow information for use in related research fields or to serve as a reference for climate models.


2021 ◽  
Author(s):  
Alexandra Berényi ◽  
Rita Pongrácz ◽  
Judit Bartholy

<p>The effects of climate change on precipitation patterns can be observed on global scale, however, global climate change affects different regions more or less severely. Because of the high variability of precipitation in particular, future changes related to precipitation can be very different, even opposite on continental/regional scale. Even within Europe, the detected trends in precipitation patterns and extremes differ across the continent. According to climate model simulations for the future, Northern Europe is projected to become wetter, while the southern parts of the continent will tend to become drier by the end of the 21st century. The frequency and intensity of extreme precipitation will also increase in the whole continent. The possible shifts in precipitation patterns from wetter to drier conditions with fewer but increased extreme precipitation events can cause severe natural hazards, such as extended drought periods, water scarcity, floods and flash floods, therefore appropriate risk management is essential. For this purpose the analysis of possible hazards associated to specific precipitation-related weather phenomena is necessary and serves as key input.</p><p>Since plain regions play an important role in agricultural economy and are more exposed to floods because of their geographic features and the gravitational movement of surface water, our primary goal was to examine temporal and spatial changes in extreme precipitation events and dry spells in three European lowlands, located in the southern part of the continent. We selected the following regions: the Po-Valley located in Italy with humid subtropical climate; the Romanian Plain in Romania, and the Pannonian Plain covering different parts of Hungary, Serbia, Slovakia, Croatia, Romania and Ukraine with humid continental climatic conditions.</p><p>Precipitation time series were used from the E-OBS v.22 dataset on a 0.1° regular grid. The dataset is based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. For the analysis of main precipitation patterns, dry spells and extreme events, we use 17 climate indices (most of them are defined by the Expert Team on Climate Change Detection and Indices, ECCDI). The analysis focuses on annual and seasonal changes in the three regions. The selected indices are capable to represent the differences and similarities between and within the plains. Our preliminary results show that the occurrence and intensity of extreme precipitation events increased in all regions, while the trends of duration and frequency of dry spells show both intra- and inter regional variability across the plains.</p>


2011 ◽  
Vol 7 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Prasch ◽  
T. Marke ◽  
U. Strasser ◽  
W. Mauser

Abstract. Future climate change will affect the water availability in large areas. In order to derive appropriate adaptation strategies the impact on the water balance has to be determined on a regional scale in a high spatial and temporal resolution. Within the framework of the BRAHMATWINN project the model system DANUBIA, developed within the project GLOWA Danube (GLOWA Danube, 2010; Mauser and Ludwig, 2002), was applied to calculate the water balance components under past and future climate conditions in the large-scale mountain watersheds of the Upper Danube and the Upper Brahmaputra. To use CLM model output data as meteorological drivers DANUBIA is coupled with the scaling tool SCALMET (Marke, 2008). For the determination of the impact of glacier melt water on the water balance the model SURGES (Weber et al., 2008; Prasch, 2010) is integrated into DANUBIA. In this paper we introduce the hydrological model DANUBIA with the tools SCALMET and SURGES. By means of the distributed hydrological time series for the past from 1971 to 2000 the model performance is presented. In order to determine the impact of climate change on the water balance in both catchments, time series from 2011 to 2080 according to the IPCC SRES emission scenarios A2, A1B, B2 and Commitment are analysed. Together with the socioeconomic outcomes (see Chapter 4) the DANUBIA model results provide the basis for the derivation of Integrated Water Resources Management Strategies to adapt to climate change impacts (see Chapter 9 and 10).


Sign in / Sign up

Export Citation Format

Share Document