Towards an integrated index on hydrometeorological risk in coastal Mediterranean Regions

Author(s):  
Maria-Carmen Llasat ◽  
Tomeu Rigo ◽  
Montserrat Llasat-Botija ◽  
Maria Cortès ◽  
Joan Gilabert ◽  
...  

<p>The Mediterranean region is a hot spot for climate and environmental changes (Cramer et al., 2018). Climate change rates currently observed and expected in future scenarios in this region, exceed the global trends for most variables. Particularly, the average annual mean temperature has risen by 1.4°C since the pre-industrial times and it is expected that it could increase more than 1°C before the end of the century. The Mediterranean coastal zone comprises 75 coastal watersheds and 224 coastal administrative regions, with a total of 46,000 km of coastline.  This coastal zone concentrates about the 50 % of the population of the Mediterranean region while also attracts millions of tourists, supports a large network of infrastructures and, also, supports a large set of coastal and marine ecosystems delivering valuable services.</p><p>Regional climatic and geographical characteristics determine the area to be frequently affected by multiple hydrometeorological hazards such as thunderstorms, floods, windstorms and marine storms. These hazards together with the existence of high values at exposure determine the Mediterranean coastal fringe to be highly vulnerable and subjected to a high risk to the impact of extreme events, which will likely be worsened due to climate change (IPCC, 2018). Due to this, long-term planning of these coastal areas requires a proper assessment of their vulnerability and risk. Usually, this has been done by considering these hazards in an independent manner, although it is clear that a more holistic and integrated approach considering their  interdependencies and feedbacks is needed.</p><p>Within this context, this work  proposes an integrated risk index to classify the Mediterranean coastal municipalities in terms of their susceptibility to be affected by multiple hydrometeorological hazards, which will be later integrated with a similar index for marine  hazards. The index will be tested for a representative Mediterranean coastal area highly affected by hydrometeorological and marine hazards, the Catalonia and Valencia coastal zone (NE Spanish Mediterranean). The indicators represent different system characteristics determining the expected risk: a) climatic, b) geomorphological and  c) impact and perception components. The selected climatic indicators used have been: return period of precipitation, number of lightning strikes and maximum wind speed. Geomorphological indicators include average slope of the catchment area and surface within the municipality. Socioeconomic indicators have been estimated from the economical compensations paid by the Consorcio de Compensación de Seguros (the National insurance company), number of flood events that have affected each municipality estimated from their impact, and population awareness and social impact measured through analysing response in social media (tweets) to the impact of these hazards. Finally, as a matter of validation, the impact of the last flood events affecting this region is compared with the spatial distribution of the developed index.</p><p>This work has been developed in the framework of the M-CostAdapt project (FEDER/MCIU-AEI/CTM2017-83655-C2-2-R) where  the adaptability to Climate Change and natural risks of the Mediterranean coast is analysed by jointly considering natural maritime and terrestrial (hydrometeorological) hazards.</p>

2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


2020 ◽  
Author(s):  
Elcin Tan

<p>A debate on the probable Istanbul Isthmus Project that may have catastrophic impacts on our ecosystem has been recently accelerated in public, due to the fact that the approved environmental impact assessment (EIA) report of the hypothetical Istanbul Isthmus (HII) Project has recently been announced. The EIA report indicates that the assessment covers only the current conditions and the conditions that may arise during the construction of the HII. Unfortunately, The EIA report did not evaluate the climate change impact on either the Istanbul Area or Mediterranean Region after the inclusion of the HII, only the current conditions were evaluated. Therefore, the aim of this study is to investigate the impact of HII on the climate of the Mediterranean Region. The climate version of the WRF Model is utilized with 9 km resolution for the Region 12: Mediterranean (CORDEX) for the historical conditions and RCP8.5 scenarios of available climate model results from CMIP5 and CMIP6 projects. Land surface and land use maps are prepared by following the EIA report if the necessary information is included, otherwise, the current conditions are applied. The atmospheric conditions were not coupled to an Ocean Model, only the Sea Surface Temperature (SST) values of the Ocean Models are coupled to the WRF model during both historical and future simulations. The model results are evaluated in terms of temperature, precipitation, and sea-level changes. Consequently, the results indicate that the HII may decrease the resilience of the Mediterranean Region to Climate Change.</p>


2021 ◽  
Author(s):  
Jose A. Jiménez ◽  
Maria-Carmen Llasat ◽  
Rut Romero ◽  
Isabel Caballero ◽  
Herminia Valdemoro ◽  
...  

<p>Risk assessments in coastal zones usually address the maritime and continental domains separately by considering marine hazards and hydrometeorological extreme drivers individually. Although this may be reasonable for many coastlines, there are environments where this uncoupled approach will underestimate their overall risk to climate hazards and, in consequence, will affect the development of efficient adaptation plans. One of these environments is the Mediterranean, due to the magnitude of individual climate hazards, the frequency of compound events (it has been identified as one of the European areas with the highest probability of compound flooding), as well as the level of exposure along its coastal zone.</p><p>In this sense, there is an increasing number of studies addressing compound risks in the coastal zone, with most of them dealing with compound flooding. In this work, we adopt a complementary approach to help coastal managers to identify hotspot areas by classifying the coastal zone into management units of homogeneous cumulative compound risk. To this end, a Compound Coastal Zone Risk index has been developed which integrates the risks associated with the impact of marine and extreme hydrometeorological hazards. Here the risk is defined in basis of three components characterizing hazards, vulnerability and exposure, with the first two ones being specific to the intrinsic characteristics of each subdomain (marine and hydro-meteorological), whereas the last one characterizes exposed values of the coastal zone, being this area affected by both hazards.</p><p>The marine composite sub-index assesses the magnitude of hazards in terms of a sea-storm indicator (in terms of waves and storm-surge conditions), background decadal-scale shoreline evolution (to characterize erosion hazards), and SLR (both inundation and erosion). This is combined with an indicator that accounts for the “coastal” system vulnerability, which includes the geomorphology, beach width (which acts as buffer zone) and the existence of accommodation space at a given time, since both variables are t-dependent.</p><p>The hydrometeorological composite sub-index assesses the magnitude of hazards in terms of a rainfall indicator (to characterize short very-intense episodes, cumulative daily values and extreme events associated to a given probability), maximum wind gust and lightning density. This is combined with an indicator that accounts for the “terrestrial” system vulnerability, similar to the flash flood potential index.</p><p>All these indicators are assessed at the smallest possible spatial scale to be as accurate as possible. Then, they are integrated at municipal scale to characterize each management unit with a representative value which permits to classify them in terms of their integrated risk while retaining information on the partial contribution of each component. The final work will present the compound index in detail, as well as the partial sub-indexes, and it will be applied along about 800 km of the Spanish Mediterranean coast to identify the most risky stretches to cumulative compound climate hazards. The index is validated by comparing obtained values with damage data recorded along the study area after the impact of marine and hydrometeorological hazards.</p><p>This work has been developed in the framework of the M-CostAdapt project (FEDER/MCIU-AEI/CTM2017-83655-C2-1-2-R).</p>


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
P. W. Thomas

AbstractVery little is known about the impact of flooding and ground saturation on ectomycorrhizal fungi (EcM) and increasing flood events are expected with predicted climate change. To explore this, seedlings inoculated with the EcM species Tuber aestivum were exposed to a range of flood durations. Oak seedlings inoculated with T. aestivum were submerged for between 7 and 65 days. After a minimum of 114-day recovery, seedling growth measurements were recorded, and root systems were destructively sampled to measure the number of existing mycorrhizae in different zones. Number of mycorrhizae did not display correlation with seedling growth measurements. Seven days of submersion resulted in a significant reduction in mycorrhizae numbers and numbers reduced most drastically in the upper zones. Increases in duration of submersion further impacted mycorrhizae numbers in the lowest soil zone only. T. aestivum mycorrhizae can survive flood durations of at least 65 days. After flooding, mycorrhizae occur in higher numbers in the lowest soil zone, suggesting a mix of resilience and recovery. The results will aid in furthering our understanding of EcM but also may aid in conservation initiatives as well as providing insight for those whose livelihoods revolve around the collection of EcM fruiting bodies or cropping of the plant partners.


2021 ◽  
Vol 14 (19) ◽  
Author(s):  
José A. Sillero-Medina ◽  
Jesús Rodrigo-Comino ◽  
José D. Ruiz-Sinoga

AbstractAssessing soil hydrological conditions can provide essential information for understanding the environmental processes that affect ecosystem services and, particularly in the context of ongoing climate change. This is key in areas affected by water scarcity such as the Mediterranean belt. Therefore, the main goals of this research are (i) to assess the main rainfall dynamics and trends of some representative hotspots along with southern Spain and (ii) to determine the impact on the soil available water content (AWC) over the last two decades. An analysis of daily precipitation and soil hydrological conditions was combined with soil sampling (543) and laboratory analyses to evaluate the properties related to the soil infiltration and retention capacity. The results show that the organic factors control soil properties and their hydrodynamics in southern Spain. Furthermore, a general declining trend in soil water availability is observed over the last two decades. This is more extreme in arid and semi-arid areas, where there have been several years in the last decade with more than 200 days without the available water content. Moreover, in these areas, heavy rainfall during specific moments of the year is the key factor that manifests a greater incidence in areas with steeper slopes, which in turn, also conditions the biological factors and the hydrodynamics of the soil. In short, in the context of climate change, the analysis of soil hydrological dynamics could be used to identify biodiversity thresholds in the Mediterranean area and even to detect phenological changes in specific plant species.


2021 ◽  
Author(s):  
Karine Bastos Leal ◽  
Luís Eduardo de Souza Robaina ◽  
André de Souza De Lima

Abstract An increase in the global mean sea is predicted during the 21st century as a consequence of global average temperature projections. In addition, changes in the strength of atmospheric cyclonic storms may alter the development of storm surges, exacerbating the risks to coastal communities. Based on the fact that the interest and range of papers are growing on this topic, this study aims to present the global scientific production status of studies that have correlated climate change and the impact of storm surges on the coastal zone leading to erosion and flooding (inundation) via a bibliometric analysis. We analyzed 429 papers published in journals between 1991 and February 2021 from the Scopus database. Through the VOSviewer and Bibliometrix R package, we describe the most relevant countries, affiliations, journals, authors, and keywords. Our results demonstrate that there has been an exponential growth in the research topic, and that authors from the United States and the United Kingdom are the most prolific. Among the 1454 authors found, 10 researchers published at least 5 papers on the topic and obtained at least 453 citations in the period. The most represented journals were the Journal of Coastal Research, Climatic Change, and Natural Hazards. We also found, and discuss, the lack of standardization in the choice of keywords, of which climate change, storm surge, and sea level rise are the most frequent. Finally, we have written a guide to facilitate the authors' bibliographic review.


New Medit ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Giuseppina Migliore ◽  
Cinzia Zinnanti ◽  
Emanuele Schimmenti ◽  
Valeria Borsellino ◽  
Giorgio Schifani ◽  
...  

This is the first study which explores the impact of climate change in Sicily, a small Mediterranean region of Southern Europe. According to research, Mediterranean area has shown large climate shifts in the last century and it has been identified as one of the most prominent “Hot-Spots” in future climate change projections. Since agriculture is an economic activity which strongly depends on climate setting and is particularly responsive to climate changes, it is important to understand how such changes may affect agricultural profitability in the Mediterranean region. The aim of the present study is to assess the expected impact of climate change on permanent crops cultivated in Sicilian region (Southern Italy). By using data from Farm Accountancy Data Network and Ensembles climatic projections for 2021-2050 period, we showed that the impact of climate change is prominent in this region. However, crops respond to climatic variations in a different manner, highlighting that unlike the strong reduction in profitability of grapevine and citrus tree, the predicted average Net Revenue of olive tree is almost the same as in the reference period (1961-1990).


2015 ◽  
Vol 12 (8) ◽  
pp. 8459-8504 ◽  
Author(s):  
M. Fader ◽  
S. Shi ◽  
W. von Bloh ◽  
A. Bondeau ◽  
W. Cramer

Abstract. Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.


Sign in / Sign up

Export Citation Format

Share Document