The role of mineral composition regulating the turnover of organic matter in 13 forest soils from Hungary

Author(s):  
Dóra Zacháry ◽  
Gergely Jakab ◽  
Tibor Filep ◽  
Réka Balázs ◽  
Zoltán Szalai

<p>The organic matter stability is regulated by the different protection mechanisms of the soil matrix and soil minerals. In spite of that, beyond the determination of the amount of fine fractions, relatively little research studied the mineralogical composition of these fractions and their organic matter stabilizing effects. Therefore, the aim of my work was to investigate the influence of the soil mineral phases on the decomposition of soil organic carbon pools of soils under forest vegetation.</p><p>Maize residues were added to the 13 soil samples (depth of 0−20 cm) collected from Hungary. The samples were incubated at 20°C and 70% field capacity during 163 days. The soil respiration was measured at specified intervals (on day 3, 8, 15, 30, 51, 79, 107, 135 and 163) and trapped in 2M NaOH and quantified by titration with 1M HCl. Another aliquot of NaOH was mixed with 2MSrCl<sub>2</sub> to get SrCO<sub>3</sub> for δ<sup>13</sup>C analysis.</p><p>The samples were analysed with an X-ray diffractometer (Rigaku Miniflex 600), a microwave plasma-atomic emission spectrometer (4200, Agilent Technologies) and an isotope ratio mass spectrometer (Delta plus XP, Thermo Finnigan). Carbon mineralization kinetics was modelled by fitting a first-order two pools model.</p><p>The results showed that 1−6% and 2−18% of the organic carbon content of the soils was mineralized in the control and amended samples during the incubation, respectively. Carbon mineralization was mostly reduced by the illite content (R<sup>2</sup>=0,797; p<0,001), Al-oxide content (R<sup>2</sup>=0,708; p<0,001) and clay content (R<sup>2</sup>=0,475; p<0,05) of the soils. The decomposition rates of the two carbon pools were found to be influenced to the greatest extent by the illite and total Al-oxide content of the soils investigated. Whereas the decomposition rate constant of the slowly mineralizable C pool was only affected by the Al-oxide and illite content, the decomposition rate constant of the easily mineralizable carbon pool was also sensitive to the other soil parameters (aromaticity, Fe-oxide content, C/N ratio, pH and clay content).</p><p>The priming effect was found to be influenced to the greatest extent by the pH (R<sup>2</sup>=0,715; p<0,05), whereas weaker negative relationship with the content of non-swelling clay minerals (R<sup>2</sup>=0,396; p<0,05), illite content (R<sup>2</sup>=0,389; p<0,05) and the C/N ratio (R<sup>2</sup>=0,345; p<0,05) of the soils was also detected.</p><p>This work was supported by the Development and Innovation Fund of Hungary [Nr. NKFIH 123953].</p>

2011 ◽  
Vol 35 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Flávio Adriano Marques ◽  
Márcia Regina Calegari ◽  
Pablo Vidal-Torrado ◽  
Peter Buurman

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.


Soil Research ◽  
1992 ◽  
Vol 30 (2) ◽  
pp. 119 ◽  
Author(s):  
RL Aitken

The objectives of this study were to examine (1) interrelationships between various forms of extractable A1 and selected soil properties, (2) the contribution of extractable A1 to pH buffer capacity, and (3) investigate the use of extractable A1 to predict lime requirement. Aluminium was extracted from each of 60 Queensland soils with a range of chloride salts: 1 M KCl (AlK), 0.5 M CuCl2 (AlCu), 0.33 M LaCl3 (AlLa) and 0.01 M CaCl2 (AlCa). The amounts of A1 extracted were in the order AlCu > AlLa > Alk > AlCa. Little or no A1 was extracted by KC1 or Lac13 in soils with pHw values greater than 5.5 , whereas CuCl2 extracted some A1 irrespective of soil pH. The greater amounts of A1 extracted by CuCl2 were attributed mainly to A1 from organic matter, even though all of the soils were mineral soils (organic carbon 54.7%). Both AlCu and AlLa, were significantly (P < 0.001) correlated with organic carbon, whereas none of the extractable A1 measures was correlated with clay content. AlK and A~L, were poorly correlated to pH buffer capacity. The linear relationship between AlCu and pH buffer capacity (r2 = 0.49) obtained in this study supports the view of previous researchers that the hydrolysis of A1 adsorbed by organic matter is a source of pH buffering in soils. However, the change in CEC with pH accounted for 76% of the variation in pH buffer capacity, indicating that other mechanisms such as deprotonation of organic groups and variable charge minerals are also involved in pH buffering. The ability of CuCl2 and LaCl3extractable Al to estimate lime requirement depended on the target pH. The results suggest that lime requirements based on neutralization of AlLa would be sufficient to raise pHw to around 5.5, whereas requirements based on neutralization of AlCu substantially overestimated the actual lime requirement to pHw 5.5, but gave a reasonable estimation of the lime requirement to pHw 6 5.


1999 ◽  
Vol 29 (3) ◽  
pp. 372-381 ◽  
Author(s):  
Erik Næsset

Decomposition rate constants were estimated from 384 cross sections of Norway spruce (Picea abies (L.) Karst.) logs with base diameter >7.0 cm collected in open areas at five different study sites in southeastern Norway. Fresh wood core samples were taken from 95 standing trees adjacent to the logs to estimate the initial density of these cross sections. Based on this chronosequence, a simple negative exponential function of time showed an average decomposition rate constant for all cross sections of 0.033 per year. Cross-section diameter, ground contact, soil moisture, and aspect were all found to have significant impacts on the decomposition rate constant. For different combinations of these characteristics the decomposition rate constant ranged from a minimum of 0.0165 per year to a maximum of 0.0488 per year.


Soil Research ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 81 ◽  
Author(s):  
Shinhuey Lim ◽  
Trung-Ta Nguyen ◽  
Petra Marschner

Addition of clay-rich subsoils to sandy soils can increase yield and may increase organic carbon (OC) retention in soils. The ability of clays to bind OC is likely to be influenced by clay properties, but little is known about the relative importance of properties of clay subsoils for binding of OC. A batch sorption experiment was conducted using seven clay subsoils collected from agricultural lands where claying was carried out. Clay subsoils were shaken for 17 h at 4°C with different concentrations of water-extractable OC (WEOC: 0, 2.5, 5.0, 7.5, and 9.0 g kg–1 soil) derived from mature wheat (Triticum aestivum L.) straw at a 1 : 10 soil : extract ratio. Sorption of WEOC was positively correlated with clay content, specific surface area and concentration of iron oxides. Further, WEOC sorption was negatively correlated with total OC content, sodium absorption ratio and cation ratio of soil structural stability. However, the relative importance of these properties for WEOC sorption differed among soils. In conclusion, OC retention in clay-amended sandy soils will be positively related to clay soil properties such as clay and Fe oxide content and specific surface area.


Author(s):  
Clever Briedis ◽  
Jeff Baldock ◽  
João C. de Moraes Sá ◽  
Josiane B. dos Santos ◽  
Janine McGowan ◽  
...  

2020 ◽  
Vol 43 (4) ◽  
pp. 295-301
Author(s):  
Samar Gangopadhyay ◽  
◽  
Samar Banerjee ◽  
Avinash Jain ◽  
Saikat Banerjee ◽  
...  

Forest soils supporting Sal-Shorea robusta (Roxb. ex Gaertn. f.) plantations in the foot hills of Darjeeling and Kurseong Divisions in West Bengal were studied for their physicochemical characteristics and carbon sequestration potential. Soils are acidic, high in organic carbon and clay content but low in soil reaction (pH) and bulk density (BD). Thick deposit of leaf litter and its decomposition products increase the soil organic carbon (SOC). Significant amount of clay content also increases the moisture content which helps in decomposing the organic matter, reducing the bulk density of soil and reduces erosion. Soil organic matter tends to concentrate with roughly more than half of the soil organic carbon in the upper soil horizons (0-30cm) at all the study sites. Among the study sites, Samardanga block registers lowest SOC while Bamanpukuri block shows highest SOC stock.


1993 ◽  
Vol 71 (12) ◽  
pp. 2155-2159 ◽  
Author(s):  
Subrata Mukhopadhyay ◽  
Swapan Chaudhuri ◽  
Rina Das ◽  
Rupendranath Banerjee

In the pH range 6.6–8.6, [MnL2(H2O)2]+ and [MnL2(H2O)(OH)] (HL = acetylacetone) oxidize oxalate ion (ox2−) to CO2 through the inner-sphere intermediates [MnL2(ox)]− and [MnL2(OH)(ox′)]2−, where ox′ is a half-bonded (unidentate) oxalate ion. Their rate constants of decomposition are 1.0 × 10−4 s−1 and 11.2 × 10−2 M−1 s−1 at 30 °C and at I = 1.0 M (NaClO4). Decomposition of these mixed complexes produces free radicals, presumably CO2−, which is further oxidized to CO2 by another Mn(III) in a fast step. At pH 4.2, [Mn(ox)3]3− is produced quantitatively when [ox]0 ≥ 0.12 M, which has been characterized spectrally, and its unimolecular decomposition rate constant k (= 2.7 × 10−4s−1 at 30 °C and I = 1.0 M) compares well with that reported earlier (2.44 × 10−4 s−1 at 25 °C and I = 1.0 M).


2004 ◽  
Vol 61 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Pedro Luís da Costa Aguiar Alves ◽  
José Marques Júnior ◽  
Antonio Sergio Ferraudo

In the soil, herbicides are submitted to absorption, leaching and degradation by physical, chemical and biological processes or absorbed by plants. All these processes are dependent on soil class and weather conditions and affect the product efficiency on weed control. The objective of this work was to investigate the influence of soil attributes on sulfentrazone efficiency for controlling purple nutsedge (Cyperus rotundus L. ). Soil samples from LVAd (Typic Haplustox), LVd, LVdf and LVef (Typic Haplustox and Typic Eutrustox), NVe (Rhodic Kandiustalf), and LVd (Typic Haplustox) were collected under two crop conditions aiming to have different clay, Fe oxides, and organic matter contents. The soil samples were submitted to granulometric, chemical and mineralogical characterization. A bioassay was used to evaluate the efficacy of sulfentrazone (1.6 L c.p. ha-1) to control purple nutsedge on pre-emergence. The sulfentrazone behaved differently among the studied soil classes. The product efficiency decreased when the soil Fe oxide content increased, following the order: LVAd, LVd, NVe, LVef and LVdf. Clay content, ranging from 240 to 640 g kg-1, and organic matter content, ranging from 12 to 78 g kg-1, did not influence sulfentrazone efficiency.


Sign in / Sign up

Export Citation Format

Share Document