Students discover the rocks and minerals that are behind the chemical elements of the Periodic Table.

Author(s):  
Natassa Detsika

<p>This work is aimed at young people at the age of 14 to 15 years old.</p><p>The work is based on the study of the Periodic Table. Students show a great interest in learning about the history of the periodic table, as well as the details of each chemical element individually. They want to know how it was discovered, the scientist who did it, in which rock we can find it, where we use it, its properties, and much more.</p><p>Combining the two sciences, Geology and Chemistry, we make a blank Periodic Table with dimensions of 2m to 1,5m. We also make cards with the elements.</p><p>The aims are:</p><ul><li>- To help students study the periodic table through various table games and learn not only the names of chemical elements but their inseparable relationship with the Earth and man.</li> <li>- To make it clear that everything we need and use has its origins in the Earth.</li> <li>- To emphasize the origins of the chemical elements in the minerals and the rocks.</li> </ul><p>For every element there are several cards. An example is Al (Aluminum). For Al, there is a card with the chemical symbol of Al, a card with the picture of Bauxite (the rock from which we get aluminum), a card with the materials made of Al, a card with a small quiz about some of its chemical or physical properties, etc. Τhe cards have colors depending on the group that the chemical elements belong to. There are also cards with the history behind a chemical element.</p><p>Students are divided into groups, in which they then pick up different cards and try to place the chemical elements in the correct box in the periodic table.</p><p>Another game they like to play is to pick a card with the element’s symbol on and try to guess the name of the element and to associate it with the suitable mineral or rock card.</p><p>In addition, the students are given atoms and bonds simulations, as well as the chemical type of a mineral and a picture or a real part of a rock, in which we find the mineral. Their goal is to construct the mineral using the simulations and the written directions. Ιn this way, they also recognize the rocks in which the chemical elements are found.</p><p>The most interesting in the above process is that students prepare the cards themselves. Thus, they are also actively involved in the process of creating their own periodic table.</p><p>In 2019, the scientific world celebrated the 150th anniversary since the creation of the periodic table. Our students, after playing such games as the above, decided to celebrate the International Year of P.T. by painting their own periodic table on canvas.</p><p>Their work is now hanging in a central school area.</p>

2011 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D.C. Hoffman

AbstractThis year (2009) marks the 140th Anniversary of Mendeleev's original 1869 periodic table of the elements based on atomic weights. It also marks the 175th anniversary of his birth in Tolbosk, Siberia. The history of the development of periodic tables of the chemical elements is briefly reviewed beginning with the presentation by Dmitri Mendeleev and his associate Nikolai Menshutkin of their original 1869 table based on atomic weights. The value, as well as the sometimes negative effects, of periodic tables in guiding the discovery of new elements based on their predicted chemical properties is assessed. It is noteworthy that the element with Z=101 (mendelevium) was identified in 1955 using chemical techniques. The discoverers proposed the name mendelevium to honor the predictive power of the Mendeleev Periodic Table. Mendelevium still remains the heaviest element to have been identified first by chemical rather than nuclear or physical techniques. The question concerning whether there will be a future role for the current form of the periodic table in predicting chemical properties and aid in the identification of elements beyond those currently known is considered.


2019 ◽  
Vol 41 (1) ◽  
pp. 2-5 ◽  
Author(s):  
Jan Reedijk ◽  
Natalia Tarasova

Abstract This year we celebrate the Periodic Table of Chemical Elements in the format proposed by Mendeleev in 1869, and its continued development to this day. This issue of CI describes several aspects of the Periodic Table, its history and celebration, and also addresses the pathways to possible new elements. In this preface we address some highlights of the papers and pay attention to the history of events that have led to IYPT2019.


Author(s):  
R. S. Islamov

The paper observes the matter of proper names of chemical elements of the periodic table by D.I. Mendeleev, the history of their origin, and transformation while the morphemic and semantic loaning from Greek and Latin languages. Moreover, the name for this lexis is proposed as stoichonyms. The topic under discussion is actual for chemistry students in classes of English. The paper provides an example of multilingual group of the speakers of Russian, Tajik, and Kyrgyz languages. The special interest is the comparative lexemic analysis of the names of chemical elements in these three languages. By means of it, one can conclude on the students' perception of the scientific lexis in the light of its etymology, on the one hand. On the other hand, one can make an approach to teaching the special lexis not only by language teacher but chemistry as well.


2020 ◽  
pp. 241-256
Author(s):  
Sarah N. Hijmans

In 1931, Paneth identified a dual meaning of the term “chemical element,” translated as “basic substance” and “simple substance.” Since then multiple philosophers of chemistry have also identified ambiguities surrounding this concept, and the IUPAC still holds a double definition today. This paper aims to help resolve this ambiguity through an analysis and reinterpretation of the two meanings of the term “element” proposed by Paneth. It is important to distinguish between elements as substances and elements as constituents, because the elementary substances disappear when elements enter into compounds, whereas the constituent subsists. The notion of simple substance fails to capture the stability of the element as a constituent of matter, and Paneth’s metaphysical idea of basic substance is contradictory with a concept of element that evolved thanks to scientific practice, not independent of it. Since these meanings are mutually exclusive, their combination within one term is problematic; yet, this paper will show that neither of them individually suffice to qualify the element. Therefore, based on a brief analysis of the history of chemistry, I will propose a way of rethinking Paneth’s distinction in order to understand the different aspects of this complex chemical concept. Though there is a certain duality to the notion of element in the sense that it can be characterized both as an abstract constituent and as a chemical substance, the term “element” does not have two distinct meanings; it refers to the element in all forms of chemical combination.


Author(s):  
Paul J. Karol

Uranium was Discovered in 1789 by the German chemist Martin Heinrich Klaproth in pitchblende ore from Joachimsthal, a town now in the Czech Republic. Nearly a century later, the Russian chemist Dmitri Mendeleev placed uranium at the end of his periodic table of the chemical elements. A century ago, Moseley used x-ray spectroscopy to set the atomic number of uranium at 92, making it the heaviest element known at the time. This chapter will deal with the quest to explore that limit and heavy and superheavy elements, and provide an update on where continuation of the periodic table is headed and some of the significant changes in its appearance and interpretation that may be necessary. Our use of the term “heavy elements” differs from that of astrophysicists who refer to elements above helium as heavy elements. The meaning of the term “superheavy” element is still not exactly agreed upon and has changed over the past several decades. “Ultraheavy” is occasionally used. Interestingly, there is no formal definition of “periodic table” by the International Union of Pure and Applied Chemistry (IUPAC) in their glossary of definitions: the “Gold Book.” But there are plenty of definitions in the general literature—including Wikipedia, the collaborative, free, internet encyclopedia which calls the “periodic table” a “tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations (electron shell model), and recurring chemical properties. Elements are presented in order of increasing atomic number (the number of protons in the nucleus).” IUPAC’s first definition of a “chemical element” is: “A species of atoms; all atoms with the same number of protons in the atomic nucleus.” Their definition of atom: “the smallest particle still characterizing a chemical element. It consists of a nucleus of positive charge (Z is the proton number and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z electrons determining its size.”


2004 ◽  
Vol 34 (2) ◽  
pp. 233-275 ◽  
Author(s):  
IGOR S. DMITRIEV

ABSTRACT: The history of Mendeleev's famous discovery has long been a matter of lively debate among experts. This essay proposes a new reading of this story, which differs from the well-known reconstructions made by Kedrov, Bensaude-Vincent, Graham and others. Particular attention is paid to the context of a Mendelevian thought and the analysis of the surviving outlines of his first variants of the Periodic Table. By considering Mendeleev's discovery of the Periodic Law one can identify the three principal stages in his work: 1) the composition of the ““first attempt””(pervaia proba) of the system of chemical elements and the discovery of the periodic character in dependence of the elements, properties on their atomic weights (late 1868-early 1869); 2) the composition of Attempt at a system of elements based on their atomic weights and chemical similarity as a temporary version of the Periodic Table (February 1869); 3) the composition of the Natural system of elements (November 1870). Mendeleevian work on Attempt revealed a lack of clear chemical criteria for unifying elements of different classes——the ““natural families”” and ““transitional metals””——into a general taxomonical scheme that forced him to reject the ideal structure of the system of elements that he had formed earlier (1868). It was only by November of 1870 that Mendeleev finally solved the ““unification problem,”” formulating the basic principles of his system. This article also discusses how Mendeleev's views on the structure of the Periodic System were mediated by his convictions regarding the constitution of organic compounds.


Author(s):  
Jomara Mendes Fernandes ◽  
Sandra Franco-Patrocínio ◽  
Ivoni Freitas-Reis

ResumoAtualmente, pensar no acesso do aluno com deficiência em sala de aula se faz essencial uma vez que todos têm o direito à educação e de estar presente de forma real na sociedade. Falando especialmente do aluno cego, este requer uma metodologia de ensino condizente com suas limitações e que valorize sua potencialidade. Assim, o objetivo desse trabalho é divulgar a experiência da confecção de uma Tabela Periódica adaptada para o Braille e que foi trabalhada em aulas de química junto a dois estudantes cegos, valorizando a história da descoberta dos elementos químicos e de sua organização até a Tabela atual. A partir dos resultados advindos dessa experiência ressaltamos que os alunos com deficiência visual necessitam de recursos didáticos e adaptações curriculares específicos para que possam participar ativamente da construção de sua aprendizagem e, para tanto, as abordagens da História da Ciência se mostram essenciais nesse processo.Palavras-chave: Inclusão; cegos; história da química.AbstractCurrently, thinking about disabled students' access to the classroom is essential since everyone has the right to education and to be present in society. Especially about the blind student, this requires a teaching methodology that is consistent with its limitations and that values its potentiality. Thus, the objective of this work is to divulge the experience of producing a Periodic Table adapted for Braille and that was used in chemistry classes with two blind students, valuing the history of the discovery of the chemical elements and of their organization up to the current Table. Based on the results of this experience, we emphasize that students with visual impairments need didactic resources and specific curricular adaptations so that they can participate actively in the construction of their learning and for this, the approaches of the History of Science are essential in this process.Keywords : Inclusive; blind; history of chemistry.


Author(s):  
Lavinel G. IONESCU ◽  
Paulo César Pereira das Neves ◽  
Flávia Schenato ◽  
Flávio Antônio Bachi

Gold is a natural solid with a crystalline stable structure and exhibits an abundance of 0.04 ppm (mg/Kg) in the Earth crust. Gold, like silver, is one of the chemical elements less abundant in nature. Only palladium, tellurium, platinum, ruthenium, rhodium, osmium, rhenium, and iridium, present a smaller geochemical distribution. Because of its low chemical reactivity, the metal has very few minerals. This review presents a synopsis of the twenty nine (29) gold minerals known at the present time.


Author(s):  
Guillermo Restrepo

The Periodic Table, Despite its near 150 years, is still a vital scientific construct. Two instances of this vitality are the recent formulation of a periodic table of protein complexes (Ahnert et al. 2015) and the announcement of four new chemical elements (Van Noorden 2016). “Interestingly, there is no formal definition of ‘Periodic Table’,” claims Karol (2017) in his chapter of the current volume. And even worse, the related concepts that come into play when referring to the periodic table (such as periodic law, chemical element, periodic system, and some others) overlap, leading to confusion. In this chapter we explore the meaning of the periodic table and of some of its related terms. In so doing we highlight a few common mistakes that arise from confusion of those terms and from misinterpretation of others. By exploring the periodic table, we analyze its mathematics and discuss a recent comment by Hoffmann (2015): “No one in my experience tries to prove [the periodic table] wrong, they just want to find some underlying reason why it is right.” We claim that if the periodic table were “wrong,” its structure would be variable; however the test of the time, including similarity studies, show that it is rather invariable. An approach to the structure of the periodic system we follow in this chapter is through similarity. In so doing we review seven works addressing the similarity of chemical elements accounting for different number of elements and using different properties, either chemical or physical ones. The concept of “chemical element” has raised the interest of several scholars such as Paneth (1962) and is still a matter of discussion given the double meaning it has (see, e.g., Scerri 2007, Earley 2009, Ruthenberg 2009, Ghibaudi et al. 2013, van Brakel 2014, Restrepo & Harré 2015), which is confusing, leading to misconceptions. The two meanings of the concept of chemical element are basic and simple substance. According to Paneth (1962), a basic substance belongs to the transcendental world and it is devoid of qualities, and therefore is not perceptible to our senses.


2019 ◽  
Vol 91 (12) ◽  
pp. 1921-1928 ◽  
Author(s):  
Mikhail Kurushkin

Abstract The history of chemistry has not once seen representations of the periodic system that have not received proper attention or recognition. The present paper is dedicated to a nearly unknown version of the periodic table published on the occasion of the centenary celebration of Mendeleev’s birth (1934) by V. Romanoff. His periodic table visually merges Werner’s and Janet’s periodic tables and it is essentially the spiral periodic system on a plane. In his 1934 paper, Romanoff was the first one to introduce the idea of the actinide series, a decade before Glenn T. Seaborg, the renowned creator of the actinide concept. As a consequence, another most outstanding thing about Romanoff’s paper occurs towards its very end: he essentially predicted the discovery of elements #106, #111 and #118. He theorized that, had uranium not been the “creative limit”, we would have met element #106, a “legal” member of group 6, element #111, a precious metal, “super-gold” and element #118, a noble gas. In 2019, we take it for granted that elements #106, #111 and #118 indeed exist and they are best known as seaborgium, roentgenium and oganesson. It is fair to say that Romanoff’s success with the prediction of correct placement and chemical properties of seaborgium, roentgenium and oganesson was only made possible due to the introduction of an early version of the actinide series that only had four elements at that time. Sadly, while Professor Romanoff was imprisoned (1938–1943), two new elements, neptunium (element #93) and plutonium (element #94) were discovered. While Professor Romanoff was in exile in Ufa (1943–1953), six further elements were added to the periodic table: americium (element #95), curium (element #96), berkelium (element #97), californium (element #98), einsteinium (element #99) and fermium (element #100). The next year after his death, in 1955, mendelevium (element #101), was discovered. Romanoff’s version of the periodic table is an unparalleled precursor to the contemporary periodic table, and is an example of extraordinary anticipation of the discovery of new chemical elements.


Sign in / Sign up

Export Citation Format

Share Document