scholarly journals THE PERIODIC TABLE OF THE ELEMENTS AND THE ASSOCIATED MINERALS: GOLD

Author(s):  
Lavinel G. IONESCU ◽  
Paulo César Pereira das Neves ◽  
Flávia Schenato ◽  
Flávio Antônio Bachi

Gold is a natural solid with a crystalline stable structure and exhibits an abundance of 0.04 ppm (mg/Kg) in the Earth crust. Gold, like silver, is one of the chemical elements less abundant in nature. Only palladium, tellurium, platinum, ruthenium, rhodium, osmium, rhenium, and iridium, present a smaller geochemical distribution. Because of its low chemical reactivity, the metal has very few minerals. This review presents a synopsis of the twenty nine (29) gold minerals known at the present time.

Author(s):  
Paulo Cesar Pereira Neves ◽  
Flavia Schenato

Silver is a natural solid with a crystalline stable structure and exhibits an abundance of 0.04 ppm (mg/kg) in the earth crust. Silver thus, like gold, is one of the chemical elements less abundant in nature. Only palladium, tellurium, platinum, ruthenium, rhodium, osmium, rhenium and iridium, present smaller geochemical distribution. However, because of its lower chemical reactivity, the metal presents a low representative in the mineral constitution. This review presents a synopsis of silver minerals (129 substances) as a contribution to the scientific knowledge of these substances.


2020 ◽  
Author(s):  
Natassa Detsika

<p>This work is aimed at young people at the age of 14 to 15 years old.</p><p>The work is based on the study of the Periodic Table. Students show a great interest in learning about the history of the periodic table, as well as the details of each chemical element individually. They want to know how it was discovered, the scientist who did it, in which rock we can find it, where we use it, its properties, and much more.</p><p>Combining the two sciences, Geology and Chemistry, we make a blank Periodic Table with dimensions of 2m to 1,5m. We also make cards with the elements.</p><p>The aims are:</p><ul><li>- To help students study the periodic table through various table games and learn not only the names of chemical elements but their inseparable relationship with the Earth and man.</li> <li>- To make it clear that everything we need and use has its origins in the Earth.</li> <li>- To emphasize the origins of the chemical elements in the minerals and the rocks.</li> </ul><p>For every element there are several cards. An example is Al (Aluminum). For Al, there is a card with the chemical symbol of Al, a card with the picture of Bauxite (the rock from which we get aluminum), a card with the materials made of Al, a card with a small quiz about some of its chemical or physical properties, etc. Τhe cards have colors depending on the group that the chemical elements belong to. There are also cards with the history behind a chemical element.</p><p>Students are divided into groups, in which they then pick up different cards and try to place the chemical elements in the correct box in the periodic table.</p><p>Another game they like to play is to pick a card with the element’s symbol on and try to guess the name of the element and to associate it with the suitable mineral or rock card.</p><p>In addition, the students are given atoms and bonds simulations, as well as the chemical type of a mineral and a picture or a real part of a rock, in which we find the mineral. Their goal is to construct the mineral using the simulations and the written directions. Ιn this way, they also recognize the rocks in which the chemical elements are found.</p><p>The most interesting in the above process is that students prepare the cards themselves. Thus, they are also actively involved in the process of creating their own periodic table.</p><p>In 2019, the scientific world celebrated the 150th anniversary since the creation of the periodic table. Our students, after playing such games as the above, decided to celebrate the International Year of P.T. by painting their own periodic table on canvas.</p><p>Their work is now hanging in a central school area.</p>


Author(s):  
Alexander P. Khomyakov

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Khomyakov, A. P. (2001). The distribution of minerals in hyper-agpaitic rocks in terms of symmetry: evolution of views on the number and symmetry of minerals. Geology of Greenland Survey Bulletin, 190, 73-82. https://doi.org/10.34194/ggub.v190.5176 _______________ Among the unique mineral localities of the Earth the complexes of nepheline syenites with hyper-agpaitic differentiates are of special interest due to their extreme diversity of mineral species. The four best studied complexes of this type – Khibina, Lovozero, Ilímaussaq and Mont Saint-Hilaire – have yielded more than 700 mineral species of which about 200 are new. The great mineral diversity is due to the combination of several factors, the most important of which is the extremely high alkalinity of agpaitic magmas, causing about half of the elements of the periodic table to be concentrated together. Minerals from hyper-agpaitic rocks are characterised by the predominance of highly ordered, low-symmetry crystal structures resulting, in particular, from the markedly extended temperature range of crystallisation. Generalisation of available data for unique mineral localities underpins the hypothesis that there is no natural limit to the number of mineral species. It is predicted that by the middle of the 21st century, the overall number of minerals recorded in nature will exceed 10 000, with the proportion of triclinic species increasing from the present 9% to 14.5%, and that of cubic species decreasing from 10% to 5%.


2021 ◽  
Vol 43 (1) ◽  
pp. 28-29

Abstract As a follow-up to the 2019 International Year of the Periodic Table of Chemical Elements (IYPT2019), the Government of the Russian Federation proposed to establish and fund the joint UNESCO/Russian Federation International Prize for the Basic Sciences in the name of the Russian chemist Dmitry Mendeleev. The initiative is to provide further support to the UNESCO’s International Basic Sciences Programme (IBSP).


2020 ◽  
Vol 42 (2) ◽  
pp. 18-21
Author(s):  
Juris Meija ◽  
Javier Garcia-Martinez ◽  
Jan Apotheker

AbstractIn 2019, the world celebrated the International Year of the Periodic Table of Chemical Elements (IYPT2019) and the IUPAC centenary. This happy coincidence offered a unique opportunity to reflect on the value and work that is carried out by IUPAC in a range of activities, including chemistry awareness, appreciation, and education. Although IUPAC curates the Periodic Table and oversees regular additions and changes, this icon of science belongs to the world. With this in mind, we wanted to create an opportunity for students and the general public to participate in this global celebration. The objective was to create an online global competition centered on the Periodic Table and IUPAC to raise awareness of the importance of chemistry in our daily lives, the richness of the chemical elements, and the key role of IUPAC in promoting chemistry worldwide. The Periodic Table Challenge was the result of this effort.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1826
Author(s):  
Mihaela Girtan ◽  
Antje Wittenberg ◽  
Maria Luisa Grilli ◽  
Daniel P. S. de Oliveira ◽  
Chiara Giosuè ◽  
...  

This editorial reports on a thorough analysis of the abundance and scarcity distribution of chemical elements and the minerals they form in the Earth, Sun, and Universe in connection with their number of neutrons and binding energy per nucleon. On one hand, understanding the elements’ formation and their specific properties related to their electronic and nucleonic structure may lead to understanding whether future solutions to replace certain elements or materials for specific technical applications are realistic. On the other hand, finding solutions to the critical availability of some of these elements is an urgent need. Even the analysis of the availability of scarce minerals from European Union sources leads to the suggestion that a wide-ranging approach is essential. These two fundamental assumptions represent also the logical approach that led the European Commission to ask for a multi-disciplinary effort from the scientific community to tackle the challenge of Critical Raw Materials. This editorial is also the story of one of the first fulcrum around which a wide network of material scientists gathered thanks to the support of the funding organization for research and innovation networks, COST (European Cooperation in Science and Technology).


2021 ◽  
Vol 43 (1) ◽  
pp. 28-28

Abstract The International Year of the Periodic Table of Chemical Elements 2019 (IYPT2019) has been celebrated during the year in over 130 countries, with well over a thousand events and festivities, reaching millions of young and old people, scientists and non-scientists. The event as a whole has been very successful; the 160-page report released last October illustrated in length the community partnership for global outreach and the diversity and success of the activities that took place throughout the year.


2011 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D.C. Hoffman

AbstractThis year (2009) marks the 140th Anniversary of Mendeleev's original 1869 periodic table of the elements based on atomic weights. It also marks the 175th anniversary of his birth in Tolbosk, Siberia. The history of the development of periodic tables of the chemical elements is briefly reviewed beginning with the presentation by Dmitri Mendeleev and his associate Nikolai Menshutkin of their original 1869 table based on atomic weights. The value, as well as the sometimes negative effects, of periodic tables in guiding the discovery of new elements based on their predicted chemical properties is assessed. It is noteworthy that the element with Z=101 (mendelevium) was identified in 1955 using chemical techniques. The discoverers proposed the name mendelevium to honor the predictive power of the Mendeleev Periodic Table. Mendelevium still remains the heaviest element to have been identified first by chemical rather than nuclear or physical techniques. The question concerning whether there will be a future role for the current form of the periodic table in predicting chemical properties and aid in the identification of elements beyond those currently known is considered.


2021 ◽  
Author(s):  
Rochelle Forrester

The change from the traditional Western and Chinese view of the elements involving materials such as water, air, earth, wood, metal and fire, to the chemical elements making up the periodic table, to atoms, to particles such as protons, neutrons and electrons, and then to quarks was inevitable. The order of discovery of these ideas of the ultimate constituents of matter was necessary, in that they could not have been discovered in any other order. This was because nature has a particular structure and we have a particular place in nature. The traditional view of the elements could be obtained by naked eye observation, and the view of nature as being made up of the chemical elements in the periodic table was next discovered, as it involved the decomposition of traditional elements, such as air and water. This led to the idea there was a separate atom for each element which explained the differences between the elements. The sub atomic particles were discovered in a necessary order with the outer particles like the electron being discovered earlier, and inner particles such as quarks being discovered later. The order of discovery of particles was also affected by the properties of the particles. The charges of particles, their mass and ability to survive outside the particles they make up, and other properties will make a particle harder or easier to discover. The order of discovery is inevitable and set by the structure of the universe. The structure of the universe includes the structure of the atom, and of the particles making up the atom, and the properties of the atom, and of the particles making up the atom.


Author(s):  
N.К. Akhmetov ◽  
G.U. Ilyasova ◽  
S. K. Kazybekova

The article discusses a new approach to the formation of periods of the Periodic Table of Mendeleev. With the help of the new formula and the first proposed quantum states of the outer electron shells of atoms of chemical elements, the periods of the periodic table are reformatted. It is supposed to reduce the number of periods in the table by introducing the corresponding sub-periods. This is confirmed by the material given in the article. The following description of the order of formation of electron layers is proposed: the principal quantum number (n), then the newly proposed quantum states of electrons («first» and «second»), which in turn constitute the electronic configurations of sub-periods in periods, and only then the remaining quantum orbitals (s, p, d and f).


Sign in / Sign up

Export Citation Format

Share Document