The Periodic System: A Mathematical Approach

Author(s):  
Guillermo Restrepo

The Periodic Table, Despite its near 150 years, is still a vital scientific construct. Two instances of this vitality are the recent formulation of a periodic table of protein complexes (Ahnert et al. 2015) and the announcement of four new chemical elements (Van Noorden 2016). “Interestingly, there is no formal definition of ‘Periodic Table’,” claims Karol (2017) in his chapter of the current volume. And even worse, the related concepts that come into play when referring to the periodic table (such as periodic law, chemical element, periodic system, and some others) overlap, leading to confusion. In this chapter we explore the meaning of the periodic table and of some of its related terms. In so doing we highlight a few common mistakes that arise from confusion of those terms and from misinterpretation of others. By exploring the periodic table, we analyze its mathematics and discuss a recent comment by Hoffmann (2015): “No one in my experience tries to prove [the periodic table] wrong, they just want to find some underlying reason why it is right.” We claim that if the periodic table were “wrong,” its structure would be variable; however the test of the time, including similarity studies, show that it is rather invariable. An approach to the structure of the periodic system we follow in this chapter is through similarity. In so doing we review seven works addressing the similarity of chemical elements accounting for different number of elements and using different properties, either chemical or physical ones. The concept of “chemical element” has raised the interest of several scholars such as Paneth (1962) and is still a matter of discussion given the double meaning it has (see, e.g., Scerri 2007, Earley 2009, Ruthenberg 2009, Ghibaudi et al. 2013, van Brakel 2014, Restrepo & Harré 2015), which is confusing, leading to misconceptions. The two meanings of the concept of chemical element are basic and simple substance. According to Paneth (1962), a basic substance belongs to the transcendental world and it is devoid of qualities, and therefore is not perceptible to our senses.

Author(s):  
Bernadette Bensaude-Vincent

The introduction of the modern concept of chemical element has often been credited to Lavoisier. I will argue that despite the significant impact of the definition of elements as non-decompound bodies in Lavoisier’s “Elements of Chemistry,” this claim is misleading for at least three reasons. First, elements were already defined as residues of analysis prior to Lavoisier. Second, Lavoisier did not totally give up the traditional view of elements as constituents of all bodies. Third, the modern definition of chemical element implies a clear distinction between simple bodies and elements that was later introduced by Dmitri Mendeleev. I will outline the role of this conceptual distinction in Mendeleev’s process of classification of elements and symmetrically emphasize how the periodic system contributed to stabilize his notion of element as an individual defined by its position in the system. Thus the concept of element appears as both a precondition and a product of the construction of the periodic system.


Author(s):  
Mikhail M. Labushev ◽  
◽  
Timofey M. Labushev ◽  

The topicality of the research comes from the need to obtain new knowledge about the manifestation of the periodic law in nature. Research aim is to associate the periodic system of chemical elements with the chemical composition and structure of natural objects. The research method suggests the creation of a solid model of the periodic system of chemical elements along with its comparison with ore formation objects as well as the manifestation of chemical elements isomorphism and some natural processes geochemistry. Research results. The solid version of the periodic table of the first 95 chemical elements together with a conventional zero element is proposed. Each volume cell characterizes a chemical element with an elementary crystal lattice of simple substance. Similar models can be composed of minerals and rocks associating with material substance of the earth's crust. 16 vertical groups in the model are arranged in a snake-like pattern. The model of the earth's crust with the “cubes” of chemical elements, minerals and mineral associations is proposed. The elements of adjacent spatial groups are naturally concentrated in combination, showing isomorphism while minerals enter the crystal lattice. The relative position of adjacent “cubes” follows the rule of translation in mutually perpendicular directions. The chemical elements of the first group can correspond spatially to volcanoes as well as mud volcanoes. The place of the zero chemical element is considered to be occupied by the elements of adjacent spatial groups. It is assumed that the faces of the “cube” of chemical elements are permeable areas through which chemical elements can be transferred. Summary. The confirmation of the model follows while considering ore formations, isomorphism of chemical elements in minerals and geochemistry of volcanic processes. 46 "Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal". No. 1. 2020 ISSN 0536-1028 Key words: chemical elements; solid model of periodic system; ore formations; isomorphism in crystals; geochemistry of volcanic processes.


Author(s):  
Paul J. Karol

Uranium was Discovered in 1789 by the German chemist Martin Heinrich Klaproth in pitchblende ore from Joachimsthal, a town now in the Czech Republic. Nearly a century later, the Russian chemist Dmitri Mendeleev placed uranium at the end of his periodic table of the chemical elements. A century ago, Moseley used x-ray spectroscopy to set the atomic number of uranium at 92, making it the heaviest element known at the time. This chapter will deal with the quest to explore that limit and heavy and superheavy elements, and provide an update on where continuation of the periodic table is headed and some of the significant changes in its appearance and interpretation that may be necessary. Our use of the term “heavy elements” differs from that of astrophysicists who refer to elements above helium as heavy elements. The meaning of the term “superheavy” element is still not exactly agreed upon and has changed over the past several decades. “Ultraheavy” is occasionally used. Interestingly, there is no formal definition of “periodic table” by the International Union of Pure and Applied Chemistry (IUPAC) in their glossary of definitions: the “Gold Book.” But there are plenty of definitions in the general literature—including Wikipedia, the collaborative, free, internet encyclopedia which calls the “periodic table” a “tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations (electron shell model), and recurring chemical properties. Elements are presented in order of increasing atomic number (the number of protons in the nucleus).” IUPAC’s first definition of a “chemical element” is: “A species of atoms; all atoms with the same number of protons in the atomic nucleus.” Their definition of atom: “the smallest particle still characterizing a chemical element. It consists of a nucleus of positive charge (Z is the proton number and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z electrons determining its size.”


Author(s):  
Yu Liu

Chemical periodicity is arguably one of the most important ideas in science, and it has profoundly influenced the development of both modern chemistry and physics (Scerri 1997, 229). While the definition of periodicity has remained largely stable in the past 150 years, the periodic system has been visualized in a wide range of forms including (to name just a few) tables, spirals, and zigzags. Furthermore, information technology makes it much easier, and offers innovative ways, to produce new versions of periodic depictions (e.g., WebElements (Winter 1993)). The multitude of periodic visualizations arouses growing interest among scholars with different academic backgrounds. For instance, educational researchers and practitioners (e.g., Waldrip et al. 2010) wrestle with the question of which visual representation will most effectively help students master the subject content of periodicity. Likewise, philosophers tend to identify the ultimate display of the periodic system, which they use as evidence to support a realistic view of periodicity (Scerri 2007, 21). Other researchers, however, take a different attitude toward the stunning diversity of periodic depictions. In a seminal paper, Marchese (2013) examines the visualization of periodicity at different stages of history from the perspectives of tabular, cartographic, and hypermedia design. His analysis illuminates the periodic table’s plasticity and endeavors to justify the constant transformation of the periodic displays as a necessary means to meet scientists’ changing needs. While all these studies generally emphasize the importance of periodic depictions in scientific research and education, they tend to give primacy to the notion of “periodic system.” By contrast, the periodic table seems to play a secondary role, which either passively reflects the chemical law or responds to the evolving knowledge of chemical elements. Such a view runs the risk of underestimating the significant function of the periodic table as a productive research tool, one which enabled Mendeleev to successfully predict the existence and the properties of undiscovered elements such as germanium in 1869 (Kibler 2007, 222). It is important to note that science and technology are “both material and semiotic practices” (Halliday 1998, 228, italics in original).


The term “element” is typically used in two distinct senses. First it is taken to mean isolated simple substances such as the green gas chlorine or the yellow solid sulphur. In some languages, including English, it is also used to denote an underlying abstract concept that subsumes simple substances but possesses no properties as such. The allotropes and isotopes of carbon, for example, all represent elements in the sense of simple substances. However, the unique position for the element carbon in the periodic table refers to the abstract sense of “element.” The dual definition of elements proposed by the International Union for Pure and Applied Chemistry contrasts an abstract meaning and an operational one. Nevertheless, the philosophical aspects of this notion are not fully captured by the IUPAC definition, despite the fact that they were crucial for the construction of the periodic table. This pivotal chemical notion remains ambiguous and such ambiguity raises problems at the epistemic, logical, and educational levels. These aspects are discussed throughout the book, from different perspectives. This collective book provides an overview of the current state of the debate on the notion of chemical element. Its authors are historians of chemistry, philosophers of chemistry, and chemists with epistemological and educational concerns.


Vestnik RFFI ◽  
2019 ◽  
pp. 17-24
Author(s):  
Aslan Yu. Tsivadze

In November 1868, the Ministry of Enlightenment of Russia approved the Charter of the Russian Chemical Society (RCS), one of the Founding Members of which had been Dmitri Mendeleev. The first report on Mendeleev Periodic Table of Chemical Elements was delivered during a meeting of the RCS in March 1869. Therefore 1869 is considered by the world science as the year of discovery of the Periodic Law and formulation of the Periodic Table of Chemical Elements. Year 2019 is the 150th anniversary since Dmitry Mendeleev discovered the Periodic System, and the United Nations proclaimed this year to be the International Year of the Periodic Table of Chemical Elements (IYPT2019). After a series of transformations, in 1992 the RCS became the Mendeleev Russian Chemical Society. In 2019, the RCS is holding anniversary events. The extraordinary Mendeleev Congress on General and Applied Chemistry is one of them. It will be held in Saint Petersburg in September 2019 and will host approximately 3,000 foreign and Russian participants. English-speaking symposia, conferences and round tables on current issues of strategic development of science and technology are planned as a part of the Congress.


Author(s):  
Benzhen Yao ◽  
Vladimir L. Kuznetsov ◽  
Tiancun Xiao ◽  
Daniel R. Slocombe ◽  
C. N. R. Rao ◽  
...  

The demarcation of the chemical elements into metals and non-metals dates back to the dawn of Dmitri Mendeleev's construction of the periodic table; it still represents the cornerstone of our view of modern chemistry. In this contribution, a particular emphasis will be attached to the question ‘Why do the chemical elements of the periodic table exist either as metals or non-metals under ambient conditions?’ This is perhaps most apparent in the p-block of the periodic table where one sees an almost-diagonal line separating metals and non-metals. The first searching, quantum-mechanical considerations of this question were put forward by Hund in 1934. Interestingly, the very first discussion of the problem—in fact, a pre-quantum-mechanical approach—was made earlier, by Goldhammer in 1913 and Herzfeld in 1927. Their simple rationalization, in terms of atomic properties which confer metallic or non-metallic status to elements across the periodic table, leads to what is commonly called the Goldhammer–Herzfeld criterion for metallization. For a variety of undoubtedly complex reasons, the Goldhammer–Herzfeld theory lay dormant for close to half a century. However, since that time the criterion has been repeatedly applied, with great success, to many systems and materials exhibiting non-metal to metal transitions in order to predict, and understand, the precise conditions for metallization. Here, we review the application of Goldhammer–Herzfeld theory to the question of the metallic versus non-metallic status of chemical elements within the periodic system. A link between that theory and the work of Sir Nevill Mott on the metal-non-metal transition is also highlighted. The application of the ‘simple’, but highly effective Goldhammer–Herzfeld and Mott criteria, reveal when a chemical element of the periodic table will behave as a metal, and when it will behave as a non-metal. The success of these different, but converging approaches, lends weight to the idea of a simple, universal criterion for rationalizing the instantly-recognizable structure of the periodic table where … the metals are here, the non-metals are there … The challenge of the metallic and non-metallic states of oxides is also briefly introduced. This article is part of the theme issue ‘Mendeleev and the periodic table’.


Author(s):  
Marco Fontani ◽  
Mariagrazia Costa ◽  
Mary Virginia Orna

Pyotr Nikolaevich Chirvinsky (1880–1955), the eminent Russian geologist, is best known as the founder of the science of meteorology. In the 1920s, Chirvinsky became the director of the Donskoi Polytechnic at Novochercassk. He spent a great deal of time as a consultant for the mines scattered throughout the Russian empire: along the Donets Basin, on the Kola and Crimean peninsulas, on the northeastern slopes of the Caucasus, and in the enormously rich mineral deposits of the Urals. His major objective in this work was to establish connections between the chemical composition of terrestrial minerals and meteorites by studying the quantity of a mineral present in a given sample of rock and the physicochemical conditions leading to its formation. He insisted that meteorites be considered legitimate objects of study in petrology, and because they had been formed in heavenly bodies and not on earth, they might provide clues regarding the formation of elements from primal material. Chirvinsky had predecessors in this way of thinking, as we shall see. The concept of prime matter is very old, coming before the definition of a chemical element, but connected to the idea of the elements. Raymond Lull (ca. 1235–1315), in his book, De Materia, defined the concept of prime matter as an element in potentia in all possible substances. The idea was very acceptable to many alchemists up until the end of the 19th century. In 1800, Jakob Joseph Winterl (1732?–1809) was a famous physician and professor at the University of Nagyszombat, in present-day Hungary. He developed a vitalistic and dualistic concept that was, from a certain point of view, anti-Enlightenment, according to which all of the chemical elements would have originated from two immaterial principles: one male, andronia, and the other female, thelyke. Although Winterl’s speculations may have been based on doubtful or misinterpreted experimental evidence, many German chemists accepted his theory. The physicist Heinrich Pfaff (1773–1852) embraced Winterl’s theory with enthusiasm, as did the pharmacist Johann Friedrich Westrumb (1751–1819) who propagated the concepts of thelyke and andronia. The first problems occurred when Winterl was unsuccessful in experimentally proving his theory.


2020 ◽  
pp. 241-256
Author(s):  
Sarah N. Hijmans

In 1931, Paneth identified a dual meaning of the term “chemical element,” translated as “basic substance” and “simple substance.” Since then multiple philosophers of chemistry have also identified ambiguities surrounding this concept, and the IUPAC still holds a double definition today. This paper aims to help resolve this ambiguity through an analysis and reinterpretation of the two meanings of the term “element” proposed by Paneth. It is important to distinguish between elements as substances and elements as constituents, because the elementary substances disappear when elements enter into compounds, whereas the constituent subsists. The notion of simple substance fails to capture the stability of the element as a constituent of matter, and Paneth’s metaphysical idea of basic substance is contradictory with a concept of element that evolved thanks to scientific practice, not independent of it. Since these meanings are mutually exclusive, their combination within one term is problematic; yet, this paper will show that neither of them individually suffice to qualify the element. Therefore, based on a brief analysis of the history of chemistry, I will propose a way of rethinking Paneth’s distinction in order to understand the different aspects of this complex chemical concept. Though there is a certain duality to the notion of element in the sense that it can be characterized both as an abstract constituent and as a chemical substance, the term “element” does not have two distinct meanings; it refers to the element in all forms of chemical combination.


2004 ◽  
Vol 34 (2) ◽  
pp. 233-275 ◽  
Author(s):  
IGOR S. DMITRIEV

ABSTRACT: The history of Mendeleev's famous discovery has long been a matter of lively debate among experts. This essay proposes a new reading of this story, which differs from the well-known reconstructions made by Kedrov, Bensaude-Vincent, Graham and others. Particular attention is paid to the context of a Mendelevian thought and the analysis of the surviving outlines of his first variants of the Periodic Table. By considering Mendeleev's discovery of the Periodic Law one can identify the three principal stages in his work: 1) the composition of the ““first attempt””(pervaia proba) of the system of chemical elements and the discovery of the periodic character in dependence of the elements, properties on their atomic weights (late 1868-early 1869); 2) the composition of Attempt at a system of elements based on their atomic weights and chemical similarity as a temporary version of the Periodic Table (February 1869); 3) the composition of the Natural system of elements (November 1870). Mendeleevian work on Attempt revealed a lack of clear chemical criteria for unifying elements of different classes——the ““natural families”” and ““transitional metals””——into a general taxomonical scheme that forced him to reject the ideal structure of the system of elements that he had formed earlier (1868). It was only by November of 1870 that Mendeleev finally solved the ““unification problem,”” formulating the basic principles of his system. This article also discusses how Mendeleev's views on the structure of the Periodic System were mediated by his convictions regarding the constitution of organic compounds.


Sign in / Sign up

Export Citation Format

Share Document