Run-up of narrow and wide-banded irregular waves on a beach

Author(s):  
Ahmed Abdalazeez ◽  
Denys Dutykh ◽  
Ira Didenkulova ◽  
Céline Labart

<p>The runup of initial Gaussian narrow-banded and wide-banded wave fields and its statistical characteristics are investigated using direct numerical simulations, based on the nonlinear shallow water equations. The bathymetry consists of the section of a constant depth, which is matched with the beach of constant slope. To address different levels of nonlinearity, the time series with five different significant wave heights are considered. The total time of each such calculated time-series is 1000 hours.</p><p>It is shown for narrow-banded wave signal that runup oscillations are no more distributed by the Gaussian distribution. The distribution is shifted to the right towards larger positive values of wave runup. Its mean value increases with an increase in nonlinearity, which reflects the known phenomenon of wave set-up. The higher moments of runup oscillations, skewness and kurtosis are negative. The skewness is decreasing with an increase in wave nonlinearity, while kurtosis is negative and varies non-monotonically with an increase in wave nonlinearity. For Gaussian wide-banded signal, the runup oscillations also deviate from Gaussian distribution. The distribution is also shifted to the right towards larger positive values of wave runup. Its mean values increase with an increase in nonlinearity, while all other higher moments change non-monotonically.     </p><p>For the extreme wave runup heights, we conclude that the tail of the probability density function behaves like a conditional Weibull distribution if the incident random waves are represented by Gaussian narrow-banded or wide-banded spectrum. This distribution can be used for evaluation of wave inundation during extreme floods (rogue runups). </p>

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1573
Author(s):  
Ahmed Abdalazeez ◽  
Ira Didenkulova ◽  
Denys Dutykh ◽  
Céline Labart

The runup of initial Gaussian narrow-banded and wide-banded wave fields and its statistical characteristics are investigated using direct numerical simulations, based on the nonlinear shallow water equations. The bathymetry consists of the section of a constant depth, which is matched with the beach of constant slope. To address different levels of nonlinearity, time series with five different significant wave heights are considered. The selected wave parameters allow for also seeing the effects of wave breaking on wave statistics. The total physical time of each simulated time-series is 1000 h (~360,000 wave periods). The statistics of calculated wave runup heights are discussed with respect to the wave nonlinearity, wave breaking and the bandwidth of the incoming wave field. The conditional Weibull distribution is suggested as a model for the description of extreme runup heights and the assessment of extreme inundations.


2020 ◽  
Vol 8 (12) ◽  
pp. 993
Author(s):  
Jonas Pinault ◽  
Denis Morichon ◽  
Volker Roeber

Accurate wave runup estimations are of great interest for coastal risk assessment and engineering design. Phase-resolving depth-integrated numerical models offer a promising alternative to commonly used empirical formulae at relatively low computational cost. Several operational models are currently freely available and have been extensively used in recent years for the computation of nearshore wave transformations and runup. However, recommendations for best practices on how to correctly utilize these models in computations of runup processes are still sparse. In this work, the Boussinesq-type model BOSZ is applied to calculate runup from irregular waves on intermediate and reflective beaches. The results are compared to an extensive laboratory data set of LiDAR measurements from wave transformation and shoreline elevation oscillations. The physical processes within the surf and swash zones such as the transfer from gravity to infragravity energy and dissipation are accurately accounted for. In addition, time series of the shoreline oscillations are well captured by the model. Comparisons of statistical values such as R2% show relative errors of less than 6%. The sensitivity of the results to various model parameters is investigated to allow for recommendations of best practices for modeling runup with phase-resolving depth-integrated models. While the breaking index is not found to be a key parameter for the examined cases, the grid size and the threshold depth, at which the runup is computed, are found to have significant influence on the results. The use of a time series, which includes both amplitude and phase information, is required for an accurate modeling of swash processes, as shown by computations with different sets of random waves, displaying a high variability and decreasing the agreement between the experiment and the model results substantially. The infragravity swash SIG is found to be sensitive to the initial phase distribution, likely because it is related to the short wave envelope.


2011 ◽  
Vol 18 (6) ◽  
pp. 967-975 ◽  
Author(s):  
P. Denissenko ◽  
I. Didenkulova ◽  
E. Pelinovsky ◽  
J. Pearson

Abstract. Runup of long irregular waves on a plane beach is studied experimentally in the water flume at the University of Warwick. Statistics of wave runup (displacement and velocity of the moving shoreline and their extreme values) is analyzed for the incident wave field with the narrow band spectrum for different amplitudes of incident waves (different values of the breaking parameter Brσ). It is shown experimentally that the distribution of the shoreline velocity does not depend on Brσ and coincides with the distribution of the vertical velocity in the incident wave field as it is predicted in the statistical theory of nonlinear long wave runup. Statistics of runup amplitudes shows the same behavior as that of the incident wave amplitudes. However, the distribution of the wave runup on a beach differs from the statistics of the incident wave elevation. The mean sea level at the coast rises with an increase in Brσ causing wave set-up on a beach, which agrees with the theoretical predictions. At the same time values of skewness and kurtosis for wave runup are similar to those for the incident wave field and they might be used for the forecast of sea floods at the coast.


Author(s):  
Ann Kristin Indrebo ◽  
John M. Niedzwecki

The accurate prediction of wave runup on deepwater offshore platform columns is of great importance for design engineers. Although linear predictive models are commonly used in the design and analysis process, many of the important effects are of higher order, and thus can only be accounted for by complex nonlinear models that better reflect the physics of the problem. This study presents a two-parameter Weibull distribution function that utilizes empirical coefficients to model the surface wave runup. Laboratory measurements of irregular waves interacting with vertical platform cylinders were used to obtain the Weibull coefficients necessary for the analytical model. Six data sets with different configurations where the wave elevation was measured close to the test cylinders are analyzed. These data on wave runup in deepwater random waves were generated at similar water depths with identical significant wave heights and spectral peak periods. Statistical parameters, zero crossing analysis and spectral analysis were utilized to characterize and interpret the time series data. The analysis focused on interpreting the tails of the probability distributions by carefully fitting the analytical model to the measured model data. This study demonstrates that the two-parameter Weibull model can be used to accurately model the wave runup on platform cylinders for the range of experimental data investigated in this study.


2019 ◽  
Vol 13 (2) ◽  
pp. 52-58
Author(s):  
V. B. Korobov ◽  
I. V. Miskevich ◽  
A. S. Lokhov ◽  
K. A. Seredkin

Abstract: pH is one of the most important parameters characterizing the state of water systems. The arithmetic mean values of samples are often used when averaging serial pH measurements in water bodies, as is usually done for other characteristics of the state of the natural environment (temperature, salinity, oxygen concentrations, suspended solids, etc.). However, in this case such an operation is illegal, since the addition of logarithms, which by definition are pH, is non-additive. The authors conducted a study to determine the extent to which pH variability in natural objects such an operation would not distort the results. For this, several samples of the pH index were generated in various ranges of its theoretically possible and natural variability. It was established that with pH variability of less than a unit characteristic of marine pH values, the statistical characteristics of the indicator and [H+ ] concentrations differ slightly, and the medians of the samples coincide. It is concluded that with such ranges characteristic of the waters of the oceans, there is no need to recalculate previously obtained results. However, for the estuaries of rivers flowing into tidal seas, as shown by field measurements, the pH variability in the mixing zone of sea and river waters is several times higher. Similar situations may occur when heavy precipitation falls on the water surface, as well as during floods. In these cases, a simple averaging of the pH values will no longer be correct. In such cases, the use of other averaging algorithms and the choice of stable statistical characteristics are required.


1970 ◽  
Vol 20 ◽  
Author(s):  
R. Goossens

Contribution to the automation of the calculations involving  the forest inventory with the aid of an office computer - In this contribution an attempt was made to perform the  calculations involving the forest inventory by means of an office computer  Olivetti P203.     The general program (flowchart 1), identical for all tree species except  for the values of the different parameters, occupies the tracks A and B of a  magnetic card used with this computer. For each tree species one magnetic  card is required, while some supplementary cards are used for the  subroutines. The first subroutine (flowchart 1) enables us to preserve  temporarily the subtotals between two tree species (mixed stands) and so  called special or stand cards (SC). After the last tree species the totals  per ha are calculated and printed on the former, the average trees occuring  on the line below. Appendix 1 gives an example of a similar form resulting  from calculations involving a sampling in a mixed stand consisting of Oak  (code 11), Red oak (code 12), Japanese larch (code 24) and Beech (code 13).  On this form we find from the left to the right: the diameter class (m), the  number of trees per ha, the basal area (m2/ha), the current annual increment  of the basal area (m2/year/ha), current annual volume increment (m3/year/ha),  the volume (m3/ha) and the money value of the standing trees (Bfr/ha). On the  line before the last, the totals of the quantities mentioned above and of all  the tree species together are to be found. The last line gives a survey of  the average values dg, g, ig, ig, v and w.     Besides this form each stand or plot has a so-called 'stand card SC' on  wich the totals cited above as well as the area of the stand or the plot and  its code are stored. Similar 'stand card' may replace in many cases  completely the classical index cards; moreover they have the advantage that  the data can be entered directly into the computer so that further  calculations, classifications or tabling can be carried out by means of an  appropriate program or subroutine. The subroutine 2 (flowchart 2) illustrates  the use of similar cards for a series of stands or eventually a complete  forest, the real values of the different quantities above are calculated and  tabled (taking into account the area). At the same time the general totals  and the general mean values per ha, as well as the average trees are  calculated and printed. Appendix 2 represents a form resulting from such  calculations by means of subroutine 2.


Author(s):  
Richard McCleary ◽  
David McDowall ◽  
Bradley J. Bartos

Chapter 8 focuses on threats to construct validity arising from the left-hand side time series and the right-hand side intervention model. Construct validity is limited to questions of whether an observed effect can be generalized to alternative cause and effect measures. The “talking out” self-injurious behavior time series, shown in Chapter 5, are examples of primary data. Researchers often have no choice but to use secondary data that were collected by third parties for purposes unrelated to any hypothesis test. Even in those less-than-ideal instances, however, an optimal time series can be constructed by limiting the time frame and otherwise paying attention to regime changes. Threats to construct validity that arise from the right-hand side intervention model, such as fuzzy or unclear onset and responses, are controlled by paying close attention to the underlying theory. Even a minimal theory should specify the onset and duration of an impact.


2021 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Dag Myrhaug ◽  
Muk Chen Ong

This article derives the time scale of pipeline scour caused by 2D (long-crested) and 3D (short-crested) nonlinear irregular waves and current for wave-dominant flow. The motivation is to provide a simple engineering tool suitable to use when assessing the time scale of equilibrium pipeline scour for these flow conditions. The method assumes the random wave process to be stationary and narrow banded adopting a distribution of the wave crest height representing 2D and 3D nonlinear irregular waves and a time scale formula for regular waves plus current. The presented results cover a range of random waves plus current flow conditions for which the method is valid. Results for typical field conditions are also presented. A possible application of the outcome of this study is that, e.g., consulting engineers can use it as part of assessing the on-bottom stability of seabed pipelines.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 602
Author(s):  
Luisa Martínez-Acosta ◽  
Juan Pablo Medrano-Barboza ◽  
Álvaro López-Ramos ◽  
John Freddy Remolina López ◽  
Álvaro Alberto López-Lambraño

Seasonal Auto Regressive Integrative Moving Average models (SARIMA) were developed for monthly rainfall time series. Normality of the rainfall time series was achieved by using the Box Cox transformation. The best SARIMA models were selected based on their autocorrelation function (ACF), partial autocorrelation function (PACF), and the minimum values of the Akaike Information Criterion (AIC). The result of the Ljung–Box statistical test shows the randomness and homogeneity of each model residuals. The performance and validation of the SARIMA models were evaluated based on various statistical measures, among these, the Student’s t-test. It is possible to obtain synthetic records that preserve the statistical characteristics of the historical record through the SARIMA models. Finally, the results obtained can be applied to various hydrological and water resources management studies. This will certainly assist policy and decision-makers to establish strategies, priorities, and the proper use of water resources in the Sinú river watershed.


Sign in / Sign up

Export Citation Format

Share Document