Multiyear predictability of extratropical North Atlantic sea surface temperatures in hindcasts initialized with wind stress anomalies

Author(s):  
Annika Reintges ◽  
Mojib Latif ◽  
Mohammad Hadi Bordbar ◽  
Wonsun Park

<p>Multiyear to decadal predictability of the North Atlantic sea surface temperature (SST) is commonly attributed to buoyancy-forced changes of the Atlantic Meridional Overturning Circulation and associated poleward heat transport. Here we investigate the role of the wind stress anomalies in decadal hindcasts for the prediction of annual extratropical North Atlantic SST anomalies. A global climate model is forced by ERA-interim wind stress anomalies over the period 1979-2017. The resulting climate states serve as initial conditions for the decadal hindcasts. We find significant skill in predicting annual SST anomalies over the central extratropical North Atlantic with anomaly correlation coefficients exceeding 0.6 at lead times of 4 to 7 years. The skill of annual SSTs is basically insensitive to the calendar month of initialization. This skill is potentially linked to a gyre-driven upper-ocean heat content anomaly that leads anomalous SSTs by several years.</p>

2021 ◽  
Author(s):  
Annika Reintges ◽  
Mojib Latif ◽  
Mohammad Hadi Bordbar ◽  
Wonsun Park

<p>Predictability of sea surface temperatures (SSTs) in the North Atlantic on timescales on several years and beyond is commonly attributed to buoyancy-forced changes of the Atlantic Meridional Overturning Circulation and associated poleward heat transport.</p><p>We examine the role of the wind stress anomalies in decadal hindcasts for the prediction of annual SST anomalies in the extratropical North Atlantic. A global climate model (KCM) is forced by ERA-interim wind stress anomalies over the period 1979-2017. The resulting climate states serve as initial conditions for decadal hindcasts.</p><p>We find significant skill in predicting annual SST anomalies over the central extratropical North Atlantic with anomaly correlation coefficients exceeding 0.6 at lead times of 4 to 7 years. The skill of annual SSTs is basically insensitive to the calendar month of initialization. We suggest that this skill is linked to a gyre-driven upper-ocean heat content anomaly that leads anomalous SSTs by several years.</p><p>Furthermore, another set of model experiments, employing a freshwater flux correction, will be assessed. Freshwater flux correction has been shown to improve the model’s mean state of North Atlantic surface properties and of the circulation. We will address the potentially improved predictability and underlying mechanisms.</p>


2011 ◽  
Vol 24 (1) ◽  
pp. 109-123 ◽  
Author(s):  
Ed Hawkins ◽  
Rowan Sutton

Abstract A key aspect in designing an efficient decadal prediction system is ensuring that the uncertainty in the ocean initial conditions is sampled optimally. Here one strategy for addressing this issue is considered by investigating the growth of optimal perturbations in the third climate configuration of the Met Office Unified Model (HadCM3) global climate model (GCM). More specifically, climatically relevant singular vectors (CSVs)—the small perturbations of which grow most rapidly for a specific set of initial conditions—are estimated for decadal time scales in the Atlantic Ocean. It is found that reliable CSVs can be estimated by running a large ensemble of integrations of the GCM. Amplification of the optimal perturbations occurs for more than 10 yr, and possibly up to 40 yr. The identified regions for growing perturbations are found to be in the far North Atlantic, and these perturbations cause amplification through an anomalous meridional overturning circulation response. Additionally, this type of analysis potentially informs the design of future ocean observing systems by identifying the sensitive regions where small uncertainties in the ocean state can grow maximally. Although these CSVs are expensive to compute, ways in which the process could be made more efficient in the future are identified.


2020 ◽  
Vol 6 (48) ◽  
pp. eabc7836
Author(s):  
Yao Fu ◽  
Feili Li ◽  
Johannes Karstensen ◽  
Chunzai Wang

The Atlantic Meridional Overturning Circulation (AMOC) is crucially important to global climate. Model simulations suggest that the AMOC may have been weakening over decades. However, existing array-based AMOC observations are not long enough to capture multidecadal changes. Here, we use repeated hydrographic sections in the subtropical and subpolar North Atlantic, combined with an inverse model constrained using satellite altimetry, to jointly analyze AMOC and hydrographic changes over the past three decades. We show that the AMOC state in the past decade is not distinctly different from that in the 1990s in the North Atlantic, with a remarkably stable partition of the subpolar overturning occurring prominently in the eastern basins rather than in the Labrador Sea. In contrast, profound hydrographic and oxygen changes, particularly in the subpolar North Atlantic, are observed over the same period, suggesting a much higher decoupling between the AMOC and ocean interior property fields than previously thought.


2016 ◽  
Vol 12 (7) ◽  
pp. 1519-1538 ◽  
Author(s):  
Harry Dowsett ◽  
Aisling Dolan ◽  
David Rowley ◽  
Robert Moucha ◽  
Alessandro M. Forte ◽  
...  

Abstract. The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions as well as means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a paleoenvironmental reconstruction of the mid-Piacenzian ( ∼  3 Ma) containing data for paleogeography, land and sea ice, sea-surface temperature, vegetation, soils, and lakes. Our retrodicted paleogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) experiments.


2014 ◽  
Vol 7 (1) ◽  
pp. 211-224 ◽  
Author(s):  
A. Schmittner ◽  
G. D. Egbert

Abstract. Two modifications to an existing scheme of tidal mixing are implemented in the coarse resolution ocean component of a global climate model. First, the vertical distribution of energy flux out of the barotropic tide is determined using high resolution bathymetry. This shifts the levels of mixing higher up in the water column and leads to a stronger mid-depth meridional overturning circulation in the model. Second, the local dissipation efficiency for diurnal tides is assumed to be larger than that for the semi-diurnal tides poleward of 30°. Both modifications are shown to improve agreement with observational estimates of diapycnal diffusivities based on microstructure measurements and circulation indices. We also assess impacts of different spatial distributions of the barotropic energy loss. Estimates based on satellite altimetry lead to larger diffusivities in the deep ocean and hence a stronger deep overturning circulation in our climate model that is in better agreement with observation based estimates compared to those based on a tidal model.


2019 ◽  
Vol 58 (7) ◽  
pp. 1509-1522 ◽  
Author(s):  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Helene B. Erlandsen

AbstractA method for empirical–statistical downscaling was adapted to project seasonal cyclone density over the North Atlantic Ocean. To this aim, the seasonal mean cyclone density was derived from instantaneous values of the 6-h mean sea level pressure (SLP) reanalysis fields. The cyclone density was then combined with seasonal mean reanalysis and global climate model projections of SLP or 500-hPa geopotential height to obtain future projections of the North Atlantic storm tracks. The empirical–statistical approach is computationally efficient because it makes use of seasonally aggregated cyclone statistics and allows the future cyclone density to be estimated from the full ensemble of available CMIP5 models rather than from a smaller subset. However, the projected cyclone density in the future differs considerably depending on the choice of predictor, SLP, or 500-hPa geopotential height. This discrepancy suggests that the relationship between the cyclone density and SLP, 500-hPa geopotential height, or both is nonstationary; that is, that the statistical model depends on the calibration period. A stationarity test based on 6-hourly HadGEM2-ES data indicated that the 500-hPa geopotential height was not a robust predictor of cyclone density.


2011 ◽  
Vol 139 (4) ◽  
pp. 1070-1082 ◽  
Author(s):  
Gabriel A. Vecchi ◽  
Ming Zhao ◽  
Hui Wang ◽  
Gabriele Villarini ◽  
Anthony Rosati ◽  
...  

Abstract Skillfully predicting North Atlantic hurricane activity months in advance is of potential societal significance and a useful test of our understanding of the factors controlling hurricane activity. In this paper, a statistical–dynamical hurricane forecasting system, based on a statistical hurricane model, with explicit uncertainty estimates, and built from a suite of high-resolution global atmospheric dynamical model integrations spanning a broad range of climate states is described. The statistical model uses two climate predictors: the sea surface temperature (SST) in the tropical North Atlantic and SST averaged over the global tropics. The choice of predictors is motivated by physical considerations, as well as the results of high-resolution hurricane modeling and statistical modeling of the observed record. The statistical hurricane model is applied to a suite of initialized dynamical global climate model forecasts of SST to predict North Atlantic hurricane frequency, which peaks during the August–October season, from different starting dates. Retrospective forecasts of the 1982–2009 period indicate that skillful predictions can be made from as early as November of the previous year; that is, skillful forecasts for the coming North Atlantic hurricane season could be made as the current one is closing. Based on forecasts initialized between November 2009 and March 2010, the model system predicts that the upcoming 2010 North Atlantic hurricane season will likely be more active than the 1982–2009 climatology, with the forecasts initialized in March 2010 predicting an expected hurricane count of eight and a 50% probability of counts between six (the 1966–2009 median) and nine.


2009 ◽  
Vol 22 (14) ◽  
pp. 3960-3978 ◽  
Author(s):  
Ed Hawkins ◽  
Rowan Sutton

Abstract The decadal predictability of three-dimensional Atlantic Ocean anomalies is examined in a coupled global climate model [the third climate configuration of the Met Office Unified Model (HadCM3)] using a linear inverse modeling (LIM) approach. It is found that the evolution of temperature and salinity in the Atlantic, and the strength of the meridional overturning circulation (MOC), can be effectively described by a linear dynamical system forced by white noise. The forecasts produced using this linear model are more skillful than other reference forecasts for several decades. Furthermore, significant nonnormal amplification is found under several different norms. The regions from which this growth occurs are found to be fairly shallow and located in the far North Atlantic. Initially, anomalies in the Nordic seas impact the MOC and the anomalies then grow to fill the entire Atlantic basin, especially at depth, over one to three decades. It is found that the structure of the optimal initial condition for amplification is sensitive to the norm employed, but the initial growth seems to be dominated by MOC-related basin-scale changes, irrespective of the choice of norm. The consistent identification of the far North Atlantic as the most sensitive region for small perturbations suggests that additional observations in this region would be optimal for constraining decadal climate predictions.


2016 ◽  
Author(s):  
Harry Dowsett ◽  
Aisling Dolan ◽  
David Rowley ◽  
Matthew Pound ◽  
Ulrich Salzmann ◽  
...  

Abstract. The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions and means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a palaeoenvironmental reconstruction of the mid-Piacenzian (~ 3 Ma) containing data for palaeogeography, land and sea-ice, sea-surface temperature, vegetation, soils and lakes. Our retrodicted palaeogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project, Phase 2 (PlioMIP2) experiments.


Sign in / Sign up

Export Citation Format

Share Document