Structural analysis of faults related to the Late Cretaceous and Paleocene evolution of the Central Srednogorie zone, Bulgaria

Author(s):  
Eleonora Balkanska ◽  
Stoyan Georgiev

<p>The Panagyurishte strip of Central Srednogorie zone, Bulgaria is part of the peri-Tethyan Upper Cretaceous Apuseni-Banat-Timok-Srednogorie magmatic arc belt and it is famous for its rich copper-porphyry and epithermal systems. The magmatic events related to the formation of the known ore systems are dated in the interval of 93–85 Ma and were followed by a period of deposition of carbonate and sandy turbidites during the latest stages of the Cretaceous and Paleocene. The main deformational event of the Central Srednogorie zone occurred after the Maastrichtian due to the closure of the arc basin and affected not only the Upper Cretaceous sequences (including the ore systems) but also the fragments of the Early Alpine edifice.</p><p>The present study is focused on the structural analysis of several regional faults that affected the Mesozoic (Triassic and Late Cretaceous) sequences in different parts of the Panagyurishte strip. The study of the post-ore deformations is important to reveal the history and current position of the ore bodies and their host rocks.</p><p>Most of the documented faults follow the main NW-SE to W-E orientation of the Panagyurishte strip. They do not represent single discrete fault surfaces but usually are segmented and the fault zones are several tens to hundreds of meters wide, often complicated by the presence of imbricate structures. Some of the faults involve rocks from the crystalline basement but most of the documented structures juxtapose different parts of the Mesozoic sequences. The deformation is brittle in almost all lithological varieties to brittle-ductile in some of the clayey limestones and turbidites at macroscopic view. Both evidence for compressional and dextral strike-slip tectonics are documented as slickenside fibres, geometry of Riedel shears and folds, lithological markers. It is difficult to distinguish them in time as no stratigraphic reference units, overprinting relationships or structural interferences between them are observed. In the different parts of the basin, either compression or strike-slip deformation are dominant. This fact, as well as the echelon configuration of the faults support the idea for their synchronous development in dextral transpressional setting and reactivation in time of the older transtenssional structures that controlled the opening of the Late Cretaceous basin.</p><p> </p><p><strong>Acknowledgements</strong>. The study is supported by the grant DN 04/9 funded by the National Science Fund, Ministry of Education and Science, Bulgaria.</p><p> </p>

2020 ◽  
Author(s):  
Stoyan Georgiev ◽  
Eleonora Balkanska ◽  
Irena Peytcheva ◽  
Dian Vangelov

<p>Vran Kamak paleovolcano is formed during the Upper Cretaceous igneous activity along the Panagyurishte strip of Central Srednogorie Zone, Bulgaria, part of the magmatic-metalogenic arc belt Apuseni-Banat-Timok-Srednogorie. It represents a comparatively well-preserved, eroded stratovolcano built of epiclastics, pyroclastics and lava flow (with typical hyaloclastite and peperite formation) succession surrounded by marine environment, as only a part from the volcanic cone was over the sea level. The central (conduit) parts of the paleovolcano are intruded by a volcanic neck in the area of Vran Kamak summit. The volcanic activity was accompanied by sedimentary gravity flows and volcaniclastic debris is dispersed in the Late Cretaceous basin. The present study provides new petrological and geochronological data for Vran Kamak paleovolcano.</p><p>The analyzed samples from the lava flows show basaltic andesite to andesite composition with SiO<sub>2</sub> contents ranging from 51 to 55.5 wt %, while the volcanic neck of the Vran Kamak summit is trachydacite (SiO<sub>2</sub> of 61.54 wt % ). The rocks are medium- to high-K calc-alkaline. On a primitive-mantle normalized diagram, the rocks show peaks in LILE (U, Th, Pb) and troughs in Nb, Ta, Ti and P. Weak negative Eu anomaly (0.83–0.94) and La<sub>N</sub>/Yb<sub>N</sub> (10 to 13) are observed. Fractionation of mafic minerals (amphibole and pyroxene) and plagioclase is visible on the harker diagrams. The <sup>87</sup>Sr/<sup>86</sup>Sr<sub>(i)</sub> ratio of 0.705141 from the volcanic neck shows small degree of crustal assimilation.</p><p>The basaltic andesite to andesite lava flows are built of plagioclase (with normal oscillatory zoning, bytownite-labrador, An<sub>88-56</sub>), amphibole (tschermakite to magnesiohastingsite) and pyroxenes (mostly augite and rare small enstatite crystals embedded in them). Some of the clinopyroxenes form corona texture around the amphibole, showing processes of dewatering. The trachydacite neck is built of porphyries of plagioclase, sanidine, biotite, amphibole (megnesiohornblende to thermakite), magmatically coroded quartz and accessories of zircon, apatite and magnetite set in a fine-grained groundmass. The calculated depths of crystallization and temperatures of the hornblende from the lava flows are 17–22 km and 930–970<sup> o</sup>C and that from the neck are 5.9–7 km and 800–830 <sup>o</sup>C, that give evidence for a complex volcano-plutonic system.</p><p>An attempt for LA-ICPMS U-Pb zircon dating of one the lava flows is made, but it contains only xenocrysts which fall in several age intervals: 306–314 Ma, 440–450 Ma, 520–530 Ma, 560–614 Ma, 810–830 Ma which represent inherited and recycled component from the local basement. This lava flow has a peperitic contact with sediments faunistically dated at the Turonian/Coniacian boundary (Cremnoceramus deformis erectus, Vangelov et al., 2019). The zircon population of the trachydacite neck is presented mostly by own magmatic grown crystals giving a Concordia age of 91.12 ±0.43 Ma.</p><p> </p><p><strong>Acknowledgements</strong>. The study is supported by grant DN 04/9 funded by the National Science Fund, Ministry of Education and Science, Bulgaria.</p><p> </p><p><strong>References:</strong></p><p>Vangelov, D., Gerdjikov, I., Dochev, D., Dotseva, Z., Velev, S., Dinev, Y., Trayanova, D., Dancheva, J. 2019. Upper Cretaceous lithostratigraphy of the Panagyurishte strip (Central Bulgaria) – part of the Late Cretaceous Apuseni-Banat-Timok-Srednogorie magmatic belt. – Geol Balc., 48, 3, 11–33.</p><p> </p>


1992 ◽  
Vol 32 (1) ◽  
pp. 231 ◽  
Author(s):  
A.M.G. Moore ◽  
J.B. Willcox ◽  
N.F. Exon ◽  
G.W. O'Brien

The continental margin of western Tasmania is underlain by the southern Otway Basin and the Sorell Basin. The latter lies mainly under the continental slope, but it includes four sub-basins (the King Island, Sandy Cape, Strahan and Port Davey sub-basins) underlying the continental shelf. In general, these depocentres are interpreted to have formed at the 'relieving bends' of a major left-lateral strike-slip fault system, associated with 'southern margin' extension and breakup (seafloor spreading). The sedimentary fill could have commenced in the Jurassic; however, the southernmost sub-basins (Strahan and Port Davey) may be Late Cretaceous and Paleocene, respectively.Maximum sediment thickness is about 4300 m in the southern Otway Basin, 3600 m in the King Island Sub-basin, 5100 m in the Sandy Cape Basin, 6500 m in the Strahan Sub-basin, and 3000 m in the Port Davey Sub-basin. Megasequences in the shelf basins are similar to those in the Otway Basin, and are generally separated by unconformities. There are Lower Cretaceous non-marine conglomerates, sandstones and mudstones, which probably include the undated red beds recovered in two wells, and Upper Cretaceous shallow marine to non-marine conglomerates, sandstones and mudstones. The Cainozoic sequence often commences with a basal conglomerate, and includes Paleocene to Lower Eocene shallow marine sandstones, mudstones and marl, Eocene shallow marine limestones, marls and sandstones, and Oligocene and younger shallow marine marls and limestones.The presence of active source rocks has been demonstrated by the occurrence of free oil near TD in the Cape Sorell-1 well (Strahan Sub-basin), and thermogenic gas from surficial sediments recovered from the upper continental slope and the Sandy Cape Sub-basin. Geohistory maturation modelling of wells and source rock 'kitchens' has shown that the best locations for liquid hydrocarbon entrapment in the southern Otway Basin are in structural positions marginward of the Prawn-1 well location. In such positions, basal Lower Cretaceous source rocks could charge overlying Pretty Hill Sandstone reservoirs. In the King Island Sub-Basin, the sediments encountered by the Clam-1 well are thermally immature, though hydrocarbons generated from within mature Lower Cretaceous rocks in adjacent depocentres could charge traps, providing that suitable migration pathways are present. Whilst no wells have been drilled in the Sandy Cape Sub-basin, basal Cretaceous potential source rocks are considered to have entered the oil window in the early Late Cretaceous, and are now capable of generating gas/condensate. Upper Cretaceous rocks appear to have entered the oil window in the Paleocene. In the Strahan Sub-Basin, mature Cretaceous sediments in the depocentres are available to traps, though considerable migration distances would be required.It is concluded that the west Tasmania margin, which has five strike-slip related depocentres and the potential to have generated and entrapped hydrocarbons, is worthy of further consideration by the exploration industry. The more prospective areas are the southern Otway Basin, and the Sandy Cape and Strahan sub-basins of the Sorell Basin.


2015 ◽  
Vol 7 (3) ◽  
pp. 2735-2773 ◽  
Author(s):  
S. Sadeghi ◽  
A. Yassaghi

Abstract. Stratigraphy, detailed structural mapping and crustal scale cross section of the NW Zagros collision zone evolved during convergence of the Arabian and Eurasian plates were conducted to constrain the spatial evolution of the belt oblique convergence since Late Cretaceous. Zagros orogeny in NW Iran consists of the Sanandaj–Sirjan, Gaveh Rud and ophiolite zones as internal, and Bisotoun, Radiolarite and High Zagros zones as external parts. The Main Zagros Thrust is known as major structures of the Zagros suture zone. Two stages of deformation are recognized in the external parts of Zagros. In the early stage, presence of dextrally deformed domains beside the reversely deformed domains in the Radiolarite zone as well as dextral-reverse faults in both Bisotoun and Radiolarite zones demonstrates partitioning of the dextral transpression. In the late stage, southeastward propagation of the Zagros orogeny towards its foreland resulted in synchronous development of orogen-parallel strike-slip and pure thrust faults. It is proposed that the first stage related to the late Cretaceous oblique obduction, and the second stage is resulted from Cenozoic collision. Cenozoic orogen-parallel strike-slip component of Zagros oblique faulting is not confined to the Zagros suture zone (Main Recent) but also occurred in the more external part (Marekhil–Ravansar fault system). Thus, it is proposed that oblique convergence of Arabia–Eurasia plates occurred in Zagros collision zone since the Late Cretaceous.


1992 ◽  
Vol 29 (5) ◽  
pp. 854-864 ◽  
Author(s):  
Craig H. B. Leitch ◽  
C. T. Hood ◽  
Xiao-Lin Cheng ◽  
A. J. Sinclair

Rocks hosting the Silver Queen epithermal Au–Ag–Zn–Pb–Cu vein deposit near Owen Lake, British Columbia, belong to the Tip Top Hill volcanics. They are lithologically similar to the informally named Upper Cretaceous Kasalka Group rocks exposed in the type area at Tahtsa Lake, 75 km southwest of the deposit, and at Mount Cronin, 100 km northwest of the deposit. The Kasalka Group rocks in the Tahtsa Lake area give questionable dates of 105 ± 5 Ma by K–Ar on whole rock but are cut by intrusions dated at 83.8 ± 2.8 Ma by K–Ar on biotite. The sequence at the Silver Queen deposit includes a polymictic conglomerate, followed upward by felsic fragmental rocks and a thick porphyritic andesite flow and sill unit, cut by microdiorite and quartz–feldspar porphyry intrusions. The porphyritic andesite and the microdiorite have been dated as Late Cretaceous (78.3 ± 2.7 and 78.7 ± 2.7 Ma, respectively, by K–Ar on whole rock), close to previous dates for these rocks (77.1 ± 2.7 and 75.3 ± 2.0 Ma, respectively). The quartz–feldspar porphyry intrudes the porphyritic andesites but has an older U–Pb zircon date of 84.6 ± 0.2 Ma, probably due to underestimation of the true age of the host rocks by the K–Ar whole-rock method. Later dykes correlate with younger volcanic rocks belonging to the Ootsa Lake and Endako groups. Eocene pre- and postmineral plagioclase-rich dykes (51.9 ± 1.8 to 51.3 ± 1.8 Ma) and late diabase dykes (50.4 ± 1.8 Ma; all by K–Ar on whole rock) may be correlative with trachyandesite volcanics of the Goosly Lake Formation, part of the Eocene Endako Group. These volcanics have been dated elsewhere at 55.6 ± 2.5 to 48.8 ± 1.8 Ma by K–Ar on whole rock and biotite, respectively. Mineralization at Silver Queen is therefore similar in age to, but slightly younger than, the producing Equity mine located 30 km to the northeast, which is estimated at 58.5 ± 2.0 Ma by K–Ar on whole rock.


2019 ◽  
Vol 59 (6) ◽  
pp. 1074-1085
Author(s):  
E. A. Sokolova

The article analyzes own data on the species composition of shells of planktonic foraminifera from the Upper Cretaceous sediments of the Indian Oceans, as well as from the sections of the offshore seas of Australia. The species of planktonic foraminifera are grouped and arranged in a climatic series. An analysis of the change in the systematic composition of foraminifers made it possible to distinguish periods of extreme and intermediate climatic states in the Late Cretaceous.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Andrew Hurst ◽  
Michael Wilson ◽  
Antonio Grippa ◽  
Lyudmyla Wilson ◽  
Giuseppe Palladino ◽  
...  

Mudstone samples from the Moreno (Upper Cretaceous-Paleocene) and Kreyenhagen (Eocene) formations are analysed using X-ray diffraction (XRD) and X-ray fluorescence (XRF) to determine their mineralogy. Smectite (Reichweite R0) is the predominant phyllosilicate present, 48% to 71.7% bulk rock mineralogy (excluding carbonate cemented and highly bio siliceous samples) and 70% to 98% of the <2 μm clay fraction. Opal CT and less so cristobalite concentrations cause the main deviations from smectite dominance. Opal A is common only in the Upper Kreyenhagen. In the <2 μm fraction, the Moreno Fm is significantly more smectite-rich than the Kreyenhagen Fm. Smectite in the Moreno Fm was derived from the alteration of volcaniclastic debris from contemporaneous rhyolitic-dacitic magmatic arc volcanism. No tuff is preserved. Smectite in the Kreyenhagen Fm was derived from intense sub-tropical weathering of granitoid-dioritic terrane during the hypothermal period in the early to mid-Eocene; the derivation from local volcanism is unlikely. All samples had chemical indices of alteration (CIA) indicative of intense weathering of source terrane. Ferriferous enrichment and the occurrence of locally common kaolinite are contributory evidence for the intensity of weathering. Low concentration (max. 7.5%) of clinoptilolite in the Lower Kreyenhagen is possibly indicative of more open marine conditions than in the Upper Kreyenhagen. There is no evidence of volumetrically significant silicate diagenesis. The main diagenetic mineralisation is restricted to low-temperature silica phase transitions.


2021 ◽  
pp. 1-24
Author(s):  
Petros Koutsovitis ◽  
Konstantinos Soukis ◽  
Panagiotis Voudouris ◽  
Stylianos Lozios ◽  
Theodoros Ntaflos ◽  
...  

2000 ◽  
Vol 171 (4) ◽  
pp. 431-440 ◽  
Author(s):  
Lahcen Boutib ◽  
Fetheddine Melki ◽  
Fouad Zargouni

Abstract Structural analysis of late Cretaceous sequences from the northeastern Tunisian Atlas, led to conclude on an active basin floor instability. Regional tectonics resulted in tilted blocks with a subsidence reorganization, since the Campanian time. These structural movements are controlled both by N140 and N100-120 trending faults. The Turonian-Coniacian and Santonian sequences display lateral thickness and facies variation, due to tectonic activity at that time. During Campanian-Maastrichtian, a reorganization of the main subsidence areas occurred, the early Senonian basins, have been sealed and closed and new half graben basins developed on area which constituted previously palaeohigh structures. These syndepositional deformations are characterized by frequent slumps, synsedimentary tilting materials, sealed normal faults and progressive low angle unconformities. These tilted blocks combined to a subsidence axis migration were induced by a NE-SW trending extensional regime. This extension which affects the Tunisian margin during the Upper Cretaceous, is related to the Tethyan and Mesogean rifting phase which resulted from the combined movements of the African and European plates.


Sign in / Sign up

Export Citation Format

Share Document