Using the Jupyter Notebook as a Tool for analyzing the EUMETSAT HSAF snow products

Author(s):  
Zuhal Akyurek ◽  
Kenan Bolat ◽  
Cagri Hasan Karaman ◽  
Matias Takala

<p>Snow cover is an essential climate variable directly affecting the Earth’s energy balance, therefore estimating the snow parameters play an important role in hydrological, land surface, meteorological and climate models. Remote sensing provides a good understanding of snow cover monitoring thus several satellite snow products have been developed and disseminated so far.  In this study, Jupyter Notebook as an open source interactive satellite snow products retrieval, visualization and analysis tool has been developed by using Python language. Jupyter Notebook allows easy and straightforward data analysis with the possibility of live interaction and requires little programming knowledge.</p><p>The developed tool provides the capabilities of downloading the satellite snow products, georeferencing them and performing spatial analysis like zonal statistics. In this study EUMETSAT HSAF snow products, namely H10 (Snow detection), H13 (Snow Water Equivalent) and H34 (Snow cover) are used. The tool allows user to upload their own region in ESRI shapefile format for spatial and temporal analysis and the uploaded region can be visualized on interactive map via custom interactive widget like ipyleaflet. The cloud percentage for the snow cover product can be selected and daily snow covered area or snow water equivalent change for the uploaded region can be calculated for the selected period. With this tool, it is aimed to retrieve the satellite snow products easily and perform spatial and temporal analysis of snow cover for the area of interest without getting lost in data formats. Therefore, users with little or no knowledge about programming can interact easily with EUMETSAT HSAF snow products. Furthermore, with the high extensibility of Jupyter Notebook, it can also be improved or modified in accordance with the need of the end users.</p>

2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


2016 ◽  
Vol 17 (5) ◽  
pp. 1467-1488 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
Lawrence Mudryk ◽  
William Merryfield ◽  
Chris Derksen

Abstract The ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) to provide realistic forecast initial conditions for snow cover is assessed using in situ measurements and gridded snow analyses. Forecast initial conditions for snow in CanCM3 and CanCM4 employed by CanSIPS are determined by the response of the Canadian Land Surface Scheme (CLASS) used in both models to forcing from model atmospheric fields constrained by assimilation of 6-hourly reanalysis data. These snow initial conditions are found to be representative of the daily climatology of snow water equivalent (SWE) as well as interannual variations in maximum SWE and the timing of snow onset and snowmelt observed at eight in situ measurement sites located across Canada. The level of this agreement is similar to that of three independent gridded snow analyses (MERRA, the European Space Agency’s GlobSnow, and an offline forced version of CLASS). Total Northern Hemisphere snow mass generated by the CanSIPS initialization procedure is larger for both models (especially CanCM3) than in MERRA, mostly because of higher SWE in regions of common snow cover. Globally, the interannual variability of initial SWE is found to correlate highly with that of MERRA in locations with appreciable snow. These initial values are compared to SWE in freely running CanCM3 and CanCM4 simulations produced without data assimilation of atmospheric fields. Differences in climatological SWE relative to MERRA are similar in the freely running and assimilating CanCM3 and CanCM4 simulations, suggesting that inherent model biases are a major contributor to biases in CanSIPS snow initial conditions.


2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


2021 ◽  
Author(s):  
Kerttu Kouki ◽  
Petri Räisänen ◽  
Kari Luojus ◽  
Anna Luomaranta ◽  
Aku Riihelä

Abstract. Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes snow cover an important variable in climate models. Monitoring snow water equivalent (SWE) at continental scale is only possible from satellites, yet substantial uncertainties have been reported in NH SWE estimates. A recent bias-correction method significantly reduces the uncertainty of NH SWE estimation, which enables a more reliable analysis of the climate models' ability to describe the snow cover. We have intercompared the CMIP6 (Coupled Model Intercomparison Project Phase 6) and satellite-based NH SWE estimates north of 40° N for the period 1982–2014, and analyzed with a regression approach whether temperature (T) and precipitation (P) could explain the differences in SWE. We analyzed separately SWE in winter and SWE change rate in spring. The SnowCCI SWE data are based on satellite passive microwave radiometer data and in situ data. The analysis shows that CMIP6 models tend to overestimate SWE, however, large variability exists between models. In winter, P is the dominant factor causing SWE discrepancies especially in the northern and coastal regions. This is in line with the expectation that even too cold temperatures cannot cause too high SWE without precipitation. T contributes to SWE biases mainly in regions, where T is close to 0 °C in winter. In spring, the importance of T in explaining the snowmelt rate discrepancies increases. This is to be expected, because the increase in T is the main factor that causes snow to melt as spring progresses. Furthermore, it is obvious from the results that biases in T or P can not explain all model biases either in SWE in winter or in the snowmelt rate in spring. Other factors, such as deficiencies in model parameterizations and possibly biases in the observational datasets, also contribute to SWE discrepancies. In particular, linear regression suggests that when the biases in T and P are eliminated, the models generally overestimate the snowmelt rate in spring.


2021 ◽  
Vol 13 (9) ◽  
pp. 4603-4619
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of water equivalent of snow cover (SWE) – the vertical depth of water that would be obtained if all the snow cover melted completely – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth (SD) and bulk snow density (defined as the ratio of SWE to SD) are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020, and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro-Québec were included. CanSWE includes over 1 million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734371 (Vionnet et al., 2021).


2013 ◽  
Vol 14 (1) ◽  
pp. 203-219 ◽  
Author(s):  
Eric Brun ◽  
Vincent Vionnet ◽  
Aaron Boone ◽  
Bertrand Decharme ◽  
Yannick Peings ◽  
...  

Abstract The Crocus snowpack model within the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model was run over northern Eurasia from 1979 to 1993, using forcing data extracted from hydrometeorological datasets and meteorological reanalyses. Simulated snow depth, snow water equivalent, and density over open fields were compared with local observations from over 1000 monitoring sites, available either once a day or three times per month. The best performance is obtained with European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim). Provided blowing snow sublimation is taken into account, the simulations show a small bias and high correlations in terms of snow depth, snow water equivalent, and density. Local snow cover durations as well as the onset and vanishing dates of continuous snow cover are also well reproduced. A major result is that the overall performance of the simulations is very similar to the performance of existing gridded snow products, which, in contrast, assimilate local snow depth observations. Soil temperature at 20-cm depth is reasonably well simulated. The methodology developed in this study is an efficient way to evaluate different meteorological datasets, especially in terms of snow precipitation. It reveals that the temporal disaggregation of monthly precipitation in the hydrometeorological dataset from Princeton University significantly impacts the rain–snow partitioning, deteriorating the simulation of the onset of snow cover as well as snow depth throughout the cold season.


2020 ◽  
Vol 55 (11-12) ◽  
pp. 2993-3016
Author(s):  
María Santolaria-Otín ◽  
Olga Zolina

Abstract Spatial and temporal patterns of snow cover extent (SCE) and snow water equivalent (SWE) over the terrestrial Arctic are analyzed based on multiple observational datasets and an ensemble of CMIP5 models during 1979–2005. For evaluation of historical simulations of the Coupled Model Intercomparison Project (CMIP5) ensemble, we used two reanalysis products, one satellite-observed product and an ensemble of different datasets. The CMIP5 models tend to significantly underestimate the observed SCE in spring but are in better agreement with observations in autumn; overall, the observed annual SCE cycle is well captured by the CMIP5 ensemble. In contrast, for SWE, the annual cycle is significantly biased, especially over North America, where some models retain snow even in summer, in disagreement with observations. The snow margin position (SMP) in the CMIP5 historical simulations is in better agreement with observations in spring than in autumn, when close agreement across the CMIP5 models is only found in central Siberia. Historical experiments from most CMIP5 models show negative pan-Arctic trends in SCE and SWE. These trends are, however, considerably weaker (and less statistically significant) than those reported from observations. Most CMIP5 models can more accurately capture the trend pattern of SCE than that of SWE, which shows quantitative and qualitative differences with the observed trends over Eurasia. Our results demonstrate the importance of using multiple data sources for the evaluation of snow characteristics in climate models. Further developments should focus on the improvement of both dataset quality and snow representation in climate models, especially ESM-SnowMIP.


Author(s):  
Gonzalo Leonardini ◽  
François Anctil ◽  
Vincent Vionnet ◽  
Maria Abrahamowicz ◽  
Daniel F. Nadeau ◽  
...  

AbstractThe Soil, Vegetation, and Snow (SVS) land surface model was recently developed at Environment and Climate Change Canada (ECCC) for operational numerical weather prediction and hydrological forecasting. This study examined the performance of the snow scheme in the SVS model over multiple years at ten well-instrumented sites from the Earth System Model-Snow Model Intercomparison Project (ESM-SnowMIP), which covers alpine, maritime and taiga climates. The SVS snow scheme is a simple single-layer snowpack scheme that uses the force-restore method. Stand-alone, point-scale verification tests showed that the model is able to realistically reproduce the main characteristics of the snow cover at these sites, namely snow water equivalent, density, snow depth, surface temperature, and albedo. SVS accurately simulated snow water equivalent, density and snow depth at open sites, but exhibited lower performance for subcanopy snowpacks (forested sites). The lower performance was attributed mainly to the limitations of the compaction scheme and the absence of a snow interception scheme. At open sites, the SVS snow surface temperatures were well represented but exhibited a cold bias, which was due to poor representation at night. SVS produced a reasonably accurate representation of snow albedo, but there was a tendency to overestimate late winter albedo. Sensitivity tests suggested improvements associated with the snow melting formulation in SVS.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 463 ◽  
Author(s):  
Samuel Lüthi ◽  
Nikolina Ban ◽  
Sven Kotlarski ◽  
Christian R. Steger ◽  
Tobias Jonas ◽  
...  

The recent development of high-resolution climate models offers a promising approach in improving the simulation of precipitation, clouds and temperature. However, higher grid spacing is also a promising feature to improve the simulation of snow cover. In particular, it provides a refined representation of topography and allows for an explicit simulation of convective precipitation processes. In this study we analyze the snow cover in a set of decade-long high-resolution climate simulation with horizontal grid spacing of 2.2 km over the greater Alpine region. Results are compared against observations and lower resolution models (12 and 50 km), which use parameterized convection. The simulations are integrated using the COSMO (Consortium for Small-Scale Modeling) model. The evaluation of snow water equivalent (SWE) in the simulation of present-day climate, driven by the ERA-Interim reanalysis, against an observational dataset, reveals that the high-resolution simulation clearly outperforms simulations with grid spacing of 12 and 50 km. The latter simulations underestimate the cumulative amount of SWE over Switzerland over the whole annual cycle by 33% (12 km simulation) and 56% (50 km simulation) while the high-resolution simulation shows a spatially and temporally averaged difference of less than 1%. Scenario simulations driven by GCM MPI-ESM-LR (2081–2090 RCP8.5 vs. 1991–2000) reveal a strong decrease of SWE over the Alps, consistent with previous studies. Previous studies had found that the relative decrease becomes gradually smaller with elevation, but this finding was limited to low and intermediate altitudes (as a 12 km simulation resolves the topography up to 2500 m). In the current study we find that the height gradient reverses sign, and relative reductions in snow cover increases above 3000 m asl, where important parts of the cryosphere are present. In addition, the simulations project a transition from permanent to seasonal snow cover at high altitudes, with potentially important impacts to Alpine permafrost. This transition and the more pronounced decline of SWE emphasize the value of the higher grid spacing. Overall, we show that high-resolution climate models offer a promising approach in improving the simulation of snow cover in Alpine terrain.


2004 ◽  
Vol 5 (6) ◽  
pp. 1064-1075 ◽  
Author(s):  
M. Rodell ◽  
P. R. Houser

Abstract A simple scheme for updating snow-water storage in a land surface model using snow cover observations is presented. The scheme makes use of snow cover observations retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites. Simulated snow-water equivalent is adjusted when and where the model and MODIS observation differ, following an internal accounting of the observation quality, by either removing the simulated snow or adding a thin layer. The scheme is tested in a 101-day global simulation of the Mosaic land surface model driven by the NASA/NOAA Global Land Data Assimilation System. Output from this simulation is compared to that from a control (not updated) simulation, and both are assessed using a conventional snow cover product and data from ground-based observation networks over the continental United States. In general, output from the updated simulation displays more accurate snow coverage and compares more favorably with in situ snow time series. Both the control and updated simulations have serious deficiencies on occasion and in certain areas when and where the precipitation and/or surface air temperature forcing inputs are unrealistic, particularly in mountainous regions. Suggestions for developing a more sophisticated updating scheme are presented.


Sign in / Sign up

Export Citation Format

Share Document