scholarly journals Empirical relationship between nightside reconnection rate and solar wind / geomagnetic measurements

Author(s):  
Andreas Lysaker Kvernhaug ◽  
Karl M. Laundal ◽  
Jone P. Reistad

<p>According to the expanding-contracting polar cap paradigm, dayside and nightside reconnection control magnetosphere-ionosphere dynamics at high latitudes by increasing or decreasing the open flux respectively. The dayside reconnection rate can be estimated using parameters measured in the solar wind, but there is no reliable and available proxy for the nightside reconnection rate. We want to remedy this by using AMPERE to estimate a time series of open flux content. The AMPERE data set originates from the global Iridium satellite system, enabling continuous measurements of the field-aligned Birkeland currents, from which the open magnetic flux of the polar caps can be derived. These estimates will be used to derive empirical relationships with available measurements on the ground and in the solar wind. This work can also help improve estimates of dayside reconnection rates.</p>

2007 ◽  
Vol 25 (1) ◽  
pp. 219-238 ◽  
Author(s):  
J. A. Wild ◽  
S. E. Milan ◽  
J. A. Davies ◽  
M. W. Dunlop ◽  
D. M. Wright ◽  
...  

Abstract. We present space- and ground-based observations of the signatures of magnetic reconnection during an interval of duskward-oriented interplanetary magnetic field on 25 March 2004. In situ field and plasma measurements are drawn from the Double Star and Cluster satellites during traversals of the pre-noon sector dayside magnetopause at low and high latitudes, respectively. These reveal the typical signatures of flux transfer events (FTEs), namely bipolar perturbations in the magnetic field component normal to the local magnetopause, enhancements in the local magnetic field strength and mixing of magnetospheric and magnetosheath plasmas. Further evidence of magnetic reconnection is inferred from the ground-based signatures of pulsed ionospheric flow observed over an extended interval. In order to ascertain the location of the reconnection site responsible for the FTEs, a simple model of open flux tube motion over the surface of the magnetopause is employed. A comparison of the modelled and observed motion of open flux tubes (i.e. FTEs) and plasma flow in the magnetopause boundary layer indicates that the FTEs observed at both low and high latitudes were consistence with the existence of a tilted X-line passing through the sub-solar region, as suggested by the component reconnection paradigm. While a high latitude X-line (as predicted by the anti-parallel description of reconnection) may have been present, we find it unlikely that it could have been responsible for the FTEs observed in the pre-noon sector under the observed IMF conditions. Finally, we note that throughout the interval, the magnetosphere was bathed in ULF oscillations within the solar wind electric field. While no one-to-one correspondence with the pulsed reconnection rate suggested by the ground-based observation of pulsed ionospheric flow has been demonstrated, we note that similar periodicity oscillations were observed throughout the solar wind-magnetosphere-ionosphere system. These findings are consistent with previously proposed mechanisms of solar wind modulation of the dayside reconnection rate.


2005 ◽  
Vol 23 (4) ◽  
pp. 1311-1316 ◽  
Author(s):  
E. A. Lvova ◽  
V. A. Sergeev ◽  
G. R. Bagautdinova

Abstract. Based on a large data set of polar NOAA-type satellite observations we studied the latitude-MLT shape of the 80keV proton isotropy boundary (IB) as a function of the solar wind parameters and magnetic activity. Using "snapshots" of isotropy boundaries near-simultaneously crossed at four points we found that its equatorward expansion, as well as its dawn-dusk shift, depends mostly on the AE-index and on the corrected Dst*, whereas the amplitude of the IB daily variation is mostly controlled by the solar wind dynamic pressure. Applying a nonlinear, multi-parametric, least-square regression procedure, the empirical relationship describing the IB latitude as a function of MLT and AE, Pd, Dst* parameters was obtained. Comparing it with the predictions from the Tsyganenko-2001 model we found a good agreement during the quiet time but some important differences during the disturbed periods. Interpretation of these results in terms of the properties of the magnetospheric configuration is briefly discussed.


2016 ◽  
Vol 9 (6) ◽  
pp. 2445-2461 ◽  
Author(s):  
Akihiko Kuze ◽  
Hiroshi Suto ◽  
Kei Shiomi ◽  
Shuji Kawakami ◽  
Makoto Tanaka ◽  
...  

Abstract. A data set containing more than 6 years (February 2009 to present) of radiance spectra for carbon dioxide (CO2) and methane (CH4) observations has been acquired by the Greenhouse gases Observing SATellite (GOSAT, available at http://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/GuigPage/open.do), nicknamed “Ibuki”, Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). This paper provides updates on the performance of the satellite and TANSO-FTS sensor and describes important changes to the data product, which has recently been made available to users. With these changes the typical accuracy of retrieved column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4, respectively) are 2 ppm or 0.5 % and 13 ppb or 0.7 %, respectively. Three major anomalies of the satellite system affecting TANSO-FTS are reported: a failure of one of the two solar paddles in May 2014, a switch to the secondary pointing system in January 2015, and most recently a cryocooler shutdown and restart in August 2015. The Level 1A (L1A) (raw interferogram) and the Level 1B (L1B) (radiance spectra) of version V201 described here have long-term uniform quality and provide consistent retrieval accuracy even after the satellite system anomalies. In addition, we discuss the unique observation abilities of GOSAT made possible by an agile pointing mechanism, which allows for optimization of global sampling patterns.


2002 ◽  
Vol 20 (3) ◽  
pp. 311-320 ◽  
Author(s):  
J. Mĕrka ◽  
J. Šafránková ◽  
Z. Nĕmeček

Abstract. The width of the cusp region is an indicator of the strength of the merging process and the degree of opening of the magnetosphere. During three years, the Magion-4 satellite, as part of the Interball project, has collected a unique data set of cusp-like plasma observations in middle and high altitudes. For a comparison of high- and low-altitude cusp determination, we map our observations of cusp-like plasma along the magnetic field lines down to the Earth’s surface. We use the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations. The footprint positions show substantial latitudinal dependence on the dipole tilt angle. We fit this dependence with a linear function and subtract this function from observed cusp position. This process allows us to study both statistical width and location of the inspected region as a function of the solar wind and IMF parameters. Our processing of the Magion-4 measurements shows that high-altitude regions occupied by the cusp-like plasma (cusp and cleft) are projected onto a much broader area (in magnetic local time as well as in a latitude) than that determined in low altitudes. The trends of the shift of the cusp position with changes in the IMF direction established by low-altitude observations have been confirmed.Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; solar wind – magnetosphere interactions)


2007 ◽  
Vol 25 (8) ◽  
pp. 1865-1876 ◽  
Author(s):  
A. D. DeJong ◽  
X. Cai ◽  
R. C. Clauer ◽  
J. F. Spann

Abstract. Using Polar UVI LBHl and IMAGE FUV WIC data, we have compared the auroral signatures and polar cap open flux for isolated substorms, sawteeth oscillations, and steady magnetospheric convection (SMC) events. First, a case study of each event type is performed, comparing auroral signatures and open magnetic fluxes to one another. The latitude location of the auroral oval is similar during isolated substorms and SMC events. The auroral intensity during SMC events is similar to that observed during the expansion phase of an isolated substorm. Examination of an individual sawtooth shows that the auroral intensity is much greater than the SMC or isolated substorm events and the auroral oval is displaced equatorward making a larger polar cap. The temporal variations observed during the individual sawtooth are similar to that observed during the isolated substorm, and while the change in polar cap flux measured during the sawtooth is larger, the percent change in flux is similar to that measured during the isolated substorm. These results are confirmed by a statistical analysis of events within these three classes. The results show that the auroral oval measured during individual sawteeth contains a polar cap with, on average, 150% more magnetic flux than the oval measured during isolated substorms or during SMC events. However, both isolated substorms and sawteeth show a 30% decrease in polar cap magnetic flux during the dipolarization (expansion) phase.


2021 ◽  
Vol 60 (1) ◽  
pp. 31-50
Author(s):  
Ryad Darawcheh ◽  
Riad Al Ghazzi ◽  
Mohamad Khir Abdul-wahed

In this research, a data set of horizontal GPS coseismic displacement in the near-field has been assembled around the world in order to investigate a potential relationship between the displacement and the earthquake parameters. Regression analyses have been applied to the data of 120 interplate earthquakes having the magnitude (Mw 4.8-9.2). An empirical relationship for prediction near-field horizontal GPS coseismic displacement as a function of moment magnitude and the distance between hypocenter and near field GPS station has been established using the multi regression analysis. The obtained relationship allows assessing the coseismic displacements associated with some large historical earthquakes occurred along the Dead Sea fault system. Such a fair relationship could be useful for assessing the coseismic displacement at any point around the active faults.


2010 ◽  
Vol 28 (2) ◽  
pp. 515-530 ◽  
Author(s):  
H. Korth ◽  
B. J. Anderson ◽  
C. L. Waters

Abstract. The spatial distributions of large-scale field-aligned Birkeland currents have been derived using magnetic field data obtained from the Iridium constellation of satellites from February 1999 to December 2007. From this database, we selected intervals that had at least 45% overlap in the large-scale currents between successive hours. The consistency in the current distributions is taken to indicate stability of the large-scale magnetosphere–ionosphere system to within the spatial and temporal resolution of the Iridium observations. The resulting data set of about 1500 two-hour intervals (4% of the data) was sorted first by the interplanetary magnetic field (IMF) GSM clock angle (arctan(By/Bz)) since this governs the spatial morphology of the currents. The Birkeland current densities were then corrected for variations in EUV-produced ionospheric conductance by normalizing the current densities to those occurring for 0° dipole tilt. To determine the dependence of the currents on other solar wind variables for a given IMF clock angle, the data were then sorted sequentially by the following parameters: the solar wind electric field in the plane normal to the Earth–Sun line, Eyz; the solar wind ram pressure; and the solar wind Alfvén Mach number. The solar wind electric field is the dominant factor determining the Birkeland current intensities. The currents shift toward noon and expand equatorward with increasing solar wind electric field. The total current increases by 0.8 MA per mV m−1 increase in Eyz for southward IMF, while for northward IMF it is nearly independent of the electric field, increasing by only 0.1 MA per mV m−1 increase in Eyz. The dependence on solar wind pressure is comparatively modest. After correcting for the solar dynamo dependencies in intensity and distribution, the total current intensity increases with solar wind dynamic pressure by 0.4 MA/nPa for southward IMF. Normalizing the Birkeland current densities to both the median solar wind electric field and dynamic pressure effects, we find no significant dependence of the Birkeland currents on solar wind Alfvén Mach number.


2009 ◽  
Vol 505 (3) ◽  
pp. 1237-1244 ◽  
Author(s):  
X. Wang ◽  
B. Klecker ◽  
P. Wurz

2011 ◽  
Vol 29 (10) ◽  
pp. 1809-1826 ◽  
Author(s):  
H. Korth ◽  
L. Rastätter ◽  
B. J. Anderson ◽  
A. J. Ridley

Abstract. Spatial distributions of the large-scale Birkeland currents derived from magnetic field data acquired by the constellation of Iridium Communications satellites have been compared with global-magnetosphere magneto-hydrodynamic (MHD) simulations. The Iridium data, spanning the interval from February 1999 to December 2007, were first sorted into 45°-wide bins of the interplanetary magnetic field (IMF) clock angle, and the dependencies of the Birkeland currents on solar wind electric field magnitude, Eyz, ram pressure, psw, and Alfvén Mach number, MA, were then examined within each bin. The simulations have been conducted at the publicly-accessible Community Coordinated Modeling Center using the University of Michigan Space Weather modeling Framework, which features a global magnetosphere model coupled to the Rice Convection Model. In excess of 120 simulations with steady-state conditions were executed to yield the dependencies of the Birkeland currents on the solar wind and IMF parameters of the coupled model. Averaged over all IMF orientations, the simulation reproduces the Iridium statistical Birkeland current distributions with a two-dimensional correlation coefficient of about 0.8, and the total current agrees with the climatology averages to within 10%. The total current for individual events regularly exceeds those computed from statistical distributions by factors of ≥2, resulting in larger disparities between observations and simulations. The simulation results also qualitatively reflect the observed increases in total current with increasing Eyz and psw, but the model underestimates the rate of increase by up to 50%. The equatorward expansion and shift of the large-scale currents toward noon observed for increasing Eyz are also evident in the simulation current patterns. Consistent with the observations, the simulation does not show a significant dependence of the total current on MA.


Sign in / Sign up

Export Citation Format

Share Document