Year-long variability of polycyclic aromatic hydrocarbons (PAHs) and their contribution to winter intense pollution events in the urban environment of Athens, Greece 

Author(s):  
Irini Tsiodra ◽  
Kalliopi Tavernaraki ◽  
Aikaterini Bougiatioti ◽  
Georgios Grivas ◽  
Maria Apostolaki ◽  
...  

<p>Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants with proven mutagenic and carcinogenic potential that originate from incomplete combustion, and partition to fine particulate matter. Nitro-PAHs & oxy-PAHs are oxidation products of PAHs with increased toxicity compared to their parent members and may reveal useful information about the aging and oxidation processes of PAHs.</p><p>In this study, we investigate the seasonal profiles of 31 PAHs and select oxidized forms such as nitro PAHs & quinones in Athens, Greece to understand their sources, levels, toxicity and impacts. PAHs levels were found to be significantly higher during winter, particularly during intense pollution episodes, compared to the other seasons. Chemical markers linked to biomass burning (BB) emissions are found to correlate well with the total amount of PAHs (ΣPAHs) during wintertime, strongly indicating that BB emissions are a significant source of PAHs. Positive Matrix Factorization (PMF) analysis showed that more than 50% of ΣPAHs originate from BB emissions and that a “factor” (composed of a specific mixture of PAHs) characterizes biomass burning emissions – and can potentially be used as a tracer. Analysis of the PMF series suggests that BB aerosol is much more carcinogenic than the effects of gasoline and diesel combustion combined. Finally, the exposure impact during winter is 9 times higher compared with the other seasons.</p><p> Acknowledgements</p><p>This work has been funded by the European Research Council, CoG-2016 project PyroTRACH (726165) H2020-EU.1.1. – Excellent. We also acknowledge support by the “PANhellenic infrastructure for Atmospheric Composition and climatE change” (MIS 5021516) implemented under the Action “Reinforcement of the Research and Innovation Infrastructure ”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).</p><p> </p>

1999 ◽  
Vol 40 (4-5) ◽  
pp. 107-114 ◽  
Author(s):  
A. Kornmüller ◽  
U. Wiesmann

The continuous ozonation of polycyclic aromatic hydrocarbons (PAH) was studied in a two stage ozonation system followed by serobic biological degradation. The highly condensed PAH benzo(e)pyrene and benzo(k)fluoranthene were oxidized selectiely in synthetic oil/water-emulsions. The influence of the ozone mass transfer gas-liquid on the reaction rate of benzo(k)fluoranthene was studied for process optimization. The dissolved ozone concentration is influenced by temperature to a higher degree than the reaction rate of PAH. In dependence on pH, PAH oxidation occurs by a direct reaction with ozone inside the oil droplets. Two main ozonation products of benzo(e)pyrene were quantified at different retention times during ozonation and their transformation could be shown in the biological treatment step.


2015 ◽  
Vol 78 (3) ◽  
pp. 554-560 ◽  
Author(s):  
CHUKWUJINDU M. A. IWEGBUE ◽  
GODSWILL O. TESI ◽  
LORETTA C. OVERAH ◽  
FRANCISCA I. BASSEY ◽  
FRANK O. NWADUKWE ◽  
...  

The concentrations and profiles of polycyclic aromatic hydrocarbons (PAHs) in 10 popular fish species in the Nigerian market were determined with a view to providing information on the health hazards associated with the consumption of these fish species. The concentrations of PAHs were measured by gas chromatography–mass spectrometry after extraction by ultrasonication with acetone-dichloromethane and clean up. The concentration ranges of the Σ16 PAHs were 20 to 39.6 μg kg−1 for Parachanna obscura (African snake head), 6.8 to 532.3 μg kg−1 for Oreochromis niloticus (tilapia), 7.4 to 91.1 μg kg−1 for Gymnarchus niloticus (Asa), 13.1 to 34.1 μg kg−1 for Sebastes fasciatus (red fish), 11.2 to 80.0 μg kg−1 for Gadus morhua (cod), 23.9 to 34.6 μg kg−1 for Chrysicthys nigrodigitatus (silver cat fish), 63.4 to 131.4 μg kg−1 for Sardinella aurita (sardine), 22 to 52.9 μg kg−1 for Trachurus trachurus (Atlantic horse mackerel), 21.0 to 63.7 μg kg−1 for Scomber scombrus (mackerel), and 27.7 to 44.5 μg kg−1 for Pseudotolithus senegalensis (croaker). Benzo[a]pyrene occurred in 23% of these fish samples at concentrations above the European Union permissible limit of 2.0 μg kg−1. The calculated margins of exposure based on the indicators for occurrence and effects of PAHs were greater than 10,000 indicating no potential risk for the consumers of the species evaluated in this study.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012108
Author(s):  
U J Yolchuyeva ◽  
R A Jafarova ◽  
V M Abbasov ◽  
N I Mursalov ◽  
G A Hajiyeva ◽  
...  

Abstract Photooxidative transformations and mechanisms of oxidative reactions in aromatic groups of hydrocarbons isolated from heavy Surakhan (Azerbaijan) petroleum under atmospheric conditions have been investigated. Polycyclic aromatic hydrocarbons, which are part of the aromatic components of heavy Surakhan petroleum, after irradiation with UV rays for 1÷11 hours in the presence of oxygen undergo chemical transformations: endoperoxides polycyclic aromatic hydrocarbons, quinones, etc. are formed. It was found that oxidation products under atmospheric conditions can be formed as follows: during the oxidation of acenes (naphthalene, anthracene), which are part of the aromatic groups of petroleum components, excited aromatic hydrocarbons (donor) interact with atmospheric oxygen (acceptor) in the triplet state with the transition of the acceptor to excited state with the formation of singlet oxygen 1O2, in this case the donor molecule returns to the ground state. When phenanthrene is photooxidized, quinones are formed (the reaction is irreversible).


2020 ◽  
Vol 31 (3) ◽  
pp. 14
Author(s):  
Ali A. Taha ◽  
Nahida J. Hameed ◽  
Farah Hamed Ali

Polycyclic aromatic hydrocarbons (PAHs) are recognized as a toxic, mutagenic and/or carcinogenic compounds, and their pollution of soil and aquifer is of increasing environmentally risk. Laccases (E.C. 1.10.3.2) are phenoloxidases catalyze the oxidation of PAHs in the presence of a mediator compound and hyacinth plant. In this study laccase from Trametes versicolor was immobilized into chitosan, and the potential to oxidize anthracene in the presence of 1-hydroxybenzotriazole (HBT) was examined. Results indicated that the immobilization enhanced the stability of laccase against temperature, pH, inhibitors and loading time compared with the other cases. The immobilized laccase-mediator system was as efficient as the free enzyme for oxidizing the tested PAHs. After 24h. of incubation, immobilized laccase–HBT showed a system oxidization more than immobilized laccase without (HBT) of PAHs; Chitosan with hyacinth plant and (HBT) resulted better conversion than chitosan with or without HBT. These results indicate a new chance for applying the immobilized laccase in bioremediation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hyunsu Choi ◽  
Choung-Soo Kim

Polycyclic aromatic hydrocarbons (PAHs) are toxicants in particulate matter (PM). The vocal fold, part of the larynx and a key structure for voicing, is always in contact with air. In recent epidemic studies, PM was shown to cause laryngitis; however, the basic mechanism has not been evaluated. In the present study, intracellular reactive oxygen species (ROS) and proinflammatory cytokine levels were analyzed after exposing human vocal fold fibroblasts (hVFFs) to PM standard reference material (SRM 2786). Expression levels of the aryl hydrocarbon receptor (AhR) and Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) were also evaluated. PM induced ROS formation and proinflammatory cytokines via the AhR CYP1A1 pathway and caused lipid peroxidation and DNA damage. Blocking AhR or CYP1A1 production using siRNAs significantly decreased ROS production and IL-6 and IL-9 expression in PM-exposed hVFFs, thus protecting the cells against oxidative stress. These results confirm that PAHs in PM play an important role in cell damage and inflammation, confirming a basic pathophysiologic relationship between PM exposure and laryngitis.


Sign in / Sign up

Export Citation Format

Share Document