Evaluation of Pendulum NGGM Scenarios by Full Closed-Loop Simulation

Author(s):  
Florian Wöske ◽  
Benny Rievers

<p>The GRACE mission (2002-2017) delivered temporal gravity field solutions of the Earth for 15 years. It's successor, GRACE follow-on (GRACE-FO) is continuing it's legacy since May 2018. The time series of monthly gravity fields revealed global mass redistribution in in the near surface layer of the Earth with unprecedented accuracy. This assessed a completely new observable in geoscience disciplines and has become a crucial data product for climate research.<br>Despite the groundbreaking success and relevance of the GRACE mission(s) for Earth observation and climate science, no further successor gravity mission is planned, yet. Summarized by the name Next Generation Gravity Mission (NGGM) concepts for future gravimetry missions have been proposed and analyzed for a while. As an outcome of these studies the so called Bender-configuration (two GRACE-like satellite pairs, one in a polar orbit and a second in an inclined orbit around 60° to 70°) is the concept currently favored by the scientific community for a candidate of the next gravity mission to be realized.</p><p><br>However, an other concept still remains interesting due to specific advantages that might contribute to future improvements of gravity missions. In order to emphasize this, we present results of a full closed loop-simulation for a different ll-SST approach, the so called pendulum. It offers a quite similar overall performance with just two satellites. For this configuration the satellites are following each other in orbits with slightly different longitudes of the ascending nodes, thus the inter-satellite measurement direction is varying between along-track and cross-track. This configuration makes an interferometric laser ranging (LRI) quite challenging on the technical level. Nevertheless, the LRI accuracy is not necessarily needed. The relevance of the pendulum configuration has also been shifted into the focus of the French MARVEL mission proposal.</p><p><br>In this contribution we analyze in detail the performance of the pendulum formation with the main parameters being the angle between along-track and cross-track component of the ranging direction at the equator, and the mean distance between the satellites. We conduct the angle variation for different mean ranges and assumed ranging accuracies. As reference, the GRACE and Bender concepts are simulated, as well. The orbit simulations are performed using a derivative of the ZARM/DLR XHPS mission simulator including high precision implementations of non-gravitational accelerations.<br>The different concepts and configurations include complete GRACE-FO like attitude control and realistic environment models. State-of-the-art instrument noise models based on GRACE/-FO are used to generate observation data for accelerometer (ACC), range dependent inter satellite ranging (KBR/LRI), kinematic orbit solution (KOS) and star camera (SCA). For the gravity recovery process we use the classical variational equation approach. As for real GRACE processing, ACC calibration parameter are estimated and KOS and KBR range-rate observations are weighted by VCE.</p>

2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


2021 ◽  
Author(s):  
Roland Pail

<p>Next Generation Gravity Missions are expected to enhance our knowledge of mass transport processes in the Earth system, establishing their products applicable to new scientific fields and serving societal needs. Compared to the current situation (GRACE Follow-On), a significant step forward to increase spatial and temporal resolution can only be achieved by new mission concepts, complemented by improved instrumentation and tailored processing strategies.</p><p>In extensive numerical closed-loop mission simulations studies, different mission concepts have been studied in detail, with emphasis on orbit design and resulting spatial-temporal ground track pattern, enhances processing and parameterization strategies, and improved post-processing/filtering strategies. Promising candidates for a next-generation gravity mission are double-pair and multi-pair constellations of GRACE/GRACE-FO-type satellites, as they are currently jointly studied by ESA and NASA. An alternative concept is high-precision ranging between high- and low-flying satellites. Since such a constellation observes mainly the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic, which significantly reduces artefacts of along-track ranging formations. This high-low concept was proposed as ESA Earth Explorer 10 mission MOBILE and is currently further studies under the name MARVEL by the French space agency. Additionally, we evaluate the potential of a hybridization of electro-static and cold-atom accelerometers in order to improve the accelerometer performance in the low-frequency range.</p><p>In this contribution, based on full-fledged numerical closed-loop simulations with realistic error assumptions regarding their key payload, different mission constellations (in-line single-pair, Bender double-pair, multi-pairs, precise high-low tracking) are assessed and compared. Their overall performance, dealiasing potential, and recovery performance of short-periodic gravity signals are analyzed, in view of their capabilities to retrieve gravity field information with short latencies to be used for societally relevant service applications, such as water management, groundwater monitoring, and forecasting of droughts and floods.</p>


2020 ◽  
Vol 8 ◽  
Author(s):  
Bramha Dutt Vishwakarma

With ongoing climate change, we are staring at possibly longer and more severe droughts in the future. Therefore, monitoring and understanding duration and intensity of droughts, and how are they evolving in space and time is imperative for global socio-economic security. Satellite remote sensing has helped us a lot in this endeavor, but most of the satellite missions observe only near-surface properties of the Earth. A recent geodetic satellite mission, GRACE, measured the water storage change both on and beneath the surface, which makes it unique and valuable for drought research. This novel dataset comes with unique problems and characteristics that we should acknowledge before using it. In this perspective article, I elucidate important characteristics of various available GRACE products that are important for drought research. I also discuss limitations of GRACE mission that one should be aware of, and finally I shed some light on latest developments in GRACE data processing that may open numerous possibilities in near future.


GIS Business ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 12-14
Author(s):  
Eicher, A

Our goal is to establish the earth observation data in the business world Unser Ziel ist es, die Erdbeobachtungsdaten in der Geschäftswelt zu etablieren


2006 ◽  
Vol 45 (12) ◽  
pp. 1597-1611 ◽  
Author(s):  
Andrew P. Holland ◽  
Allen J. Riordan ◽  
E. C. Franklin

Abstract An analytical model is presented to describe patterns of downed trees produced by tornadic winds. The model uses a combined Rankine vortex of specified tangential and radial components to describe a simple tornado circulation. A total wind field is then computed by adding the forward motion of the vortex. The lateral and vertical forces on modeled tree stands are then computed and are compared with physical characteristics of Scots and loblolly pine. From this model, patterns of windfall are computed and are compared to reveal three basic damage patterns: cross-track symmetric, along-track asymmetric, and crisscross asymmetric. These patterns are shown to depend on forward speed, radial speed, and tree resistance. It is anticipated that this model will prove to be useful in assessing storm characteristics from damage patterns observed in forested areas.


2015 ◽  
Vol 143 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Feimin Zhang ◽  
Yi Yang ◽  
Chenghai Wang

Abstract In this paper, the Weather Research and Forecasting (WRF) Model with the three-dimensional variational data assimilation (WRF-3DVAR) system is used to investigate the impact on the near-surface wind forecast of assimilating both conventional data and Advanced Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (ATOVS) radiances compared with assimilating conventional data only. The results show that the quality of the initial field and the forecast performance of wind in the lower atmosphere are improved in both assimilation cases. Assimilation results capture the spatial distribution of the wind speed, and the observation data assimilation has a positive effect on near-surface wind forecasts. Although the impacts of assimilating ATOVS radiances on near-surface wind forecasts are limited, the fine structure of local weather systems illustrated by the WRF-3DVAR system suggests that assimilating ATOVS radiances has a positive effect on the near-surface wind forecast under conditions that ATOVS radiances in the initial condition are properly amplified. Assimilating conventional data is an effective approach for improving the forecast of the near-surface wind.


2016 ◽  
Vol 9 (6) ◽  
pp. 2545-2565 ◽  
Author(s):  
Neil P. Hindley ◽  
Nathan D. Smith ◽  
Corwin J. Wright ◽  
D. Andrew S. Rees ◽  
Nicholas J. Mitchell

Abstract. Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.


2020 ◽  
Vol 12 (8) ◽  
pp. 1322 ◽  
Author(s):  
Andrew Clive Banks ◽  
Riho Vendt ◽  
Krista Alikas ◽  
Agnieszka Bialek ◽  
Joel Kuusk ◽  
...  

Earth observation data can help us understand and address some of the grand challenges and threats facing us today as a species and as a planet, for example climate change and its impacts and sustainable use of the Earth’s resources. However, in order to have confidence in earth observation data, measurements made at the surface of the Earth, with the intention of providing verification or validation of satellite-mounted sensor measurements, should be trustworthy and at least of the same high quality as those taken with the satellite sensors themselves. Metrology tells us that in order to be trustworthy, measurements should include an unbroken chain of SI-traceable calibrations and comparisons and full uncertainty budgets for each of the in situ sensors. Until now, this has not been the case for most satellite validation measurements. Therefore, within this context, the European Space Agency (ESA) funded a series of Fiducial Reference Measurements (FRM) projects targeting the validation of satellite data products of the atmosphere, land, and ocean, and setting the framework, standards, and protocols for future satellite validation efforts. The FRM4SOC project was structured to provide this support for evaluating and improving the state of the art in ocean colour radiometry (OCR) and satellite ocean colour validation through a series of comparisons under the auspices of the Committee on Earth Observation Satellites (CEOS). This followed the recommendations from the International Ocean Colour Coordinating Group’s white paper and supports the CEOS ocean colour virtual constellation. The main objective was to establish and maintain SI traceable ground-based FRM for satellite ocean colour and thus make a fundamental contribution to the European system for monitoring the Earth (Copernicus). This paper outlines the FRM4SOC project structure, objectives and methodology and highlights the main results and achievements of the project: (1) An international SI-traceable comparison of irradiance and radiance sources used for OCR calibration that set measurement, calibration and uncertainty estimation protocols and indicated good agreement between the participating calibration laboratories from around the world; (2) An international SI-traceable laboratory and outdoor comparison of radiometers used for satellite ocean colour validation that set OCR calibration and comparison protocols; (3) A major review and update to the protocols for taking irradiance and radiance field measurements for satellite ocean colour validation, with particular focus on aspects of data acquisition and processing that must be considered in the estimation of measurement uncertainty and guidelines for good practice; (4) A technical comparison of the main radiometers used globally for satellite ocean colour validation bringing radiometer manufacturers together around the same table for the first time to discuss instrument characterisation and its documentation, as needed for measurement uncertainty estimation; (5) Two major international side-by-side field intercomparisons of multiple ocean colour radiometers, one on the Atlantic Meridional Transect (AMT) oceanographic cruise, and the other on the Acqua Alta oceanographic tower in the Gulf of Venice; (6) Impact and promotion of FRM within the ocean colour community, including a scientific road map for the FRM-based future of satellite ocean colour validation and vicarious calibration (based on the findings of the FRM4SOC project, the consensus from two major international FRM4SOC workshops and previous literature, including the IOCCG white paper on in situ ocean colour radiometry).


Sign in / Sign up

Export Citation Format

Share Document