The observation of different aerosols types in the Mount Etna environment and their relative and mutual impacts on local radiative balance

Author(s):  
Pasquale Sellitto ◽  
Giuseppe Salerno ◽  
Simona Scollo ◽  
Alcide Giorgio di Sarra ◽  
Antonella Boselli ◽  
...  

<p>The EPL-RADIO (Etna Plume Lab - Radioactive Aerosols and other source parameters for better atmospheric Dispersion and Impact estimatiOns) and EPL-REFLECT (near-source estimations of Radiative EFfects of voLcanic aErosols for Climate and air quality sTudies) projects, funded by the EC Horizon2020 ENVRIplus and EUROVOLC Transnational Access to European Observatories programmes, aim to advance the understanding of Mount Etna as a persistent source of atmospheric aerosols and its impact on the  radiative budget at proximal to regional spatial scales. Research was tackled by carrying out three campaigns in the summers of 2016, 2017 and 2019 to observe the volcanic plume produced by passive degassing, proximally and distally from the summit craters, using a wide array of remote sensing and in situ instruments. Diverse data are collected to explore the link of inner degassing mechanisms to the characterisation of near-source aerosol physicochemical properties and subsequent impacts on the atmosphere, environment and regional climate system.</p><p>The results of the three campaigns have shown that the volcanic plume emitted by Mount Etna often mixes with aerosols of different origins generating a complex layered pattern. Frequent mineral dust transport events were observed by both LiDAR observations located at Serra La Nave (~7 km south-west from summit craters) and at a medium-term radiometric station, equipped with a Multi-Filter Rotating Shadowband Radiometer (MFRSR), and other instruments located at Milo (~10 km eastwards from the craters). LiDAR observations also allowed to study the coexistence of volcanic aerosols and biomass burning particles from local to more distal smoke plumes transports (like for the well-documented large fires from continental southern Italy in July 2017). In situ filter and optical particles counter measurements confirmed the presence of dust at Milo. The interaction/mixing among volcanic, wildfire, and dust aerosols occurs in an overall dynamical regime which appears to be dominated by sea breeze, which is strengthened by the presence of the dark volcanic lava flanks. Photolysis process also possibly play a role in determining the daily evolution of the aerosol plume.</p><p>The sources of these different aerosol types are studied in detail using Lagrangian trajectories and meteorological data. Off-line radiative transfer calculations, using EPL-RADIO/REFLECT observations as input data, are used to estimate the relative radiative impact of the different aerosol types with respect to the background passive-degassing aerosols coming from Mount Etna.</p>

2021 ◽  
Author(s):  
Alessia Sannino ◽  
Antonella Boselli ◽  
Giuseppe Leto ◽  
Simona Scollo ◽  
Ricardo Zanmar Sanchez ◽  
...  

<p>Mount Etna (Italy) is the most high-impact volcanoes on Mediterranean scale mainly due to its eruptive activity and continuous passive degassing, and the inherent large amount of effluents released into the atmosphere. Mount Etna’s emission mainly originate from the summit craters at an altitude of about 3300 m, feeding frequently volcanic gases and aerosols into the free troposphere. Consequently, their effects on the atmosphere and regional climate system span over relatively long spatiotemporal scales.</p><p>In order to better understand the role that Mount Etna’s emissions play on the atmospheric composition and radiative balance in the Mediterranean area, multidisciplinary and multi-scale studies have been carried out since a few years within the different phases of the EtnaPlumeLab (EPL) research cluster. A part of the EPL effort is based on dedicated field campaigns, that aim at the characterization of volcanic sources emissions and nears-source plume dispersion and evolution.</p><p>In this work, we investigate the three-dimensional (3D) distribution of the volcanic aerosols from Mount Etna observed during the most recent EPL field campaign, named EPL-REFLECT (near-source estimations of Radiative EFfects of voLcanic aErosols for Climate and air quality sTudies) carried out within the Transnational Access component of the EUROVOLC project. This field campaign completes the previous EPL-RADIO (Radioactive Aerosols and other source parameters for better atmospheric Dispersion and Impact estimatiOns) campaign. Here we discuss the observations of a multiparametric LiDAR system AMPLE. The LiDAR is equipped with a fast scanning, double depolarization (at 532 and 355 nm) and high repetition laser source (1kHz), which is an essential point to derive time series of 3D-resolved aerosol properties near Etna. During the 8-12<sup>th</sup> of July 2019 period, day/night LiDAR measurements were performed by AMPLE from the astronomical observatory of the INAF-Catania in the location of Serra la Nave at 1725 m a.s.l., pointing towards the summit of Mount Etna. In particular, on the July 11<sup>th</sup>, the scan was performed with time-steps of 15 minutes at different angles from the top of the volcano to the zenith. These acquisitions highlight the atmospheric evolution of two layers related to two distinct degassing episodes. A comparative analysis with wind speed information and the integration with complementary photometric ground measurements have further constrained this 3D characterization and the evolution of these layers, including those outside the LiDAR field of view.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pasquale Sellitto ◽  
Giuseppe Salerno ◽  
Alessandro La Spina ◽  
Tommaso Caltabiano ◽  
Simona Scollo ◽  
...  

Abstract The aerosol properties of Mount Etna’s passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO campaigns (summer 2016–2017), using a synergistic combination of observations and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations. Using portable photometers, the first mapping of small-scale (within $$\sim 20\,\hbox {km}$$ ∼ 20 km from the degassing craters) spatial variability of the average size and coarse-to-fine burden proportion of volcanic aerosols is obtained. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and/or coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Statistically significant progressively smaller particles and decreasing coarse-to-fine particles burden proportion are found along plume dispersion. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effect of the plume. For a plume with an ultraviolet aerosol optical depth of 0.12–0.14, daily average radiative forcings of $$-\;4.5$$ - 4.5 and $$-\;7.0\,\hbox {W/m}^2$$ - 7.0 W/m 2 , at TOA and surface, are found at a fixed location $$\sim 7\,\hbox {km}$$ ∼ 7 km downwind the degassing craters. This is the first available estimation in the literature of the local radiative impact of a passive degassing volcanic plume.


2020 ◽  
Author(s):  
Pasquale Sellitto ◽  
Giuseppe Salerno ◽  
Alessandro La Spina ◽  
Tommaso Caltabiano ◽  
Simona Scollo ◽  
...  

<p>The aerosol properties of Mount Etna’s passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO/REFLECT campaigns (summer 2016, 17 and 19), using a synergistic combination of remote-sensing and in situ observations, and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations, with no evidence of secondary sulphate aerosols (SA) formation. Marked indications of secondary SA formation, i.e. by the conversion of volcanic SO2 emissions, are found at larger spatial scales (<20 km downwind craters). Using portable photometers, the first mapping of small-scale spatial variability of the average size and burden of volcanic aerosols is obtained, as well as different longitudinal, perpendicular and vertical sections. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effects of the plume. Moreover, the radiative impact of Mount Etna’s emissions is studied using a medium-term time series (a few months during summer 2019) of coupled aerosol optical properties and surface radiative flux at a fixed station on Etna’s eastern flank. These are the first available estimations in the literature of the radiative impact of a passive degassing volcanic plume and are here critically discussed. Cases of co-existent volcanic aerosol layers and aerosols from other sources (Saharan dust transport events, wildfire from South Italy and marine aerosols) are also presented and discussed.</p>


2013 ◽  
Vol 13 (17) ◽  
pp. 8569-8584 ◽  
Author(s):  
M. Boichu ◽  
L. Menut ◽  
D. Khvorostyanov ◽  
L. Clarisse ◽  
C. Clerbaux ◽  
...  

Abstract. Depending on the magnitude of their eruptions, volcanoes impact the atmosphere at various temporal and spatial scales. The volcanic source remains a major unknown to rigorously assess these impacts. At the scale of an eruption, the limited knowledge of source parameters, including time variations of erupted mass flux and emission profile, currently represents the greatest issue that limits the reliability of volcanic cloud forecasts. Today, a growing number of satellite and remote sensing observations of distant plumes are becoming available, bringing indirect information on these source terms. Here, we develop an inverse modelling approach combining satellite observations of the volcanic plume with an Eulerian regional chemistry-transport model (CHIMERE) to characterise the volcanic SO2 emissions during an eruptive crisis. The May 2010 eruption of Eyjafjallajökull is a perfect case study to apply this method as the volcano emitted substantial amounts of SO2 during more than a month. We take advantage of the SO2 column amounts provided by a vast set of IASI (Infrared Atmospheric Sounding Interferometer) satellite images to reconstruct retrospectively the time series of the mid-tropospheric SO2 flux emitted by the volcano with a temporal resolution of ~2 h, spanning the period from 1 to 12 May 2010. We show that no a priori knowledge on the SO2 flux is required for this reconstruction. The initialisation of chemistry-transport modelling with this reconstructed source allows for reliable simulation of the evolution of the long-lived tropospheric SO2 cloud over thousands of kilometres. Heterogeneities within the plume, which mainly result from the temporal variability of the emissions, are correctly tracked over a timescale of a week. The robustness of our approach is also demonstrated by the broad similarities between the SO2 flux history determined by this study and the ash discharge behaviour estimated by other means during the phases of high explosive activity at Eyjafjallajökull in May 2010. Finally, we show how a sequential IASI data assimilation allows for a substantial improvement in the forecasts of the location and concentration of the plume compared to an approach assuming constant flux at the source. As the SO2 flux is an important indicator of the volcanic activity, this approach is also of interest to monitor poorly instrumented volcanoes from space.


2013 ◽  
Vol 13 (3) ◽  
pp. 6553-6588 ◽  
Author(s):  
M. Boichu ◽  
L. Menut ◽  
D. Khvorostyanov ◽  
L. Clarisse ◽  
C. Clerbaux ◽  
...  

Abstract. Depending on the magnitude of their eruptions, volcanoes impact the atmosphere at various temporal and spatial scales. The volcanic source remains a major unknown to rigorously assess these impacts. At the scale of an eruption, the limited knowledge of source parameters, including time-variations of erupted mass flux and emission profile, currently represents the greatest issue that limits the reliability of volcanic cloud forecasts. Today, a growing number of satellite and remote sensing observations of distant plumes are becoming available, bringing indirect information on these source terms. Here, we develop an inverse modeling approach combining satellite observations of the volcanic plume with an Eulerian regional chemistry-transport model (CHIMERE) to better characterise the volcanic SO2 emissions during an eruptive crisis. The May 2010 eruption of Eyjafjallajökull is a perfect case-study to apply this method as the volcano emitted substantial amounts of SO2 during more than a month. We take advantage of the SO2 column amounts provided by a vast set of IASI (Infrared Atmospheric Sounding Interferometer) satellite images to reconstruct retrospectively the time-series of the mid-tropospheric SO2 flux emitted by the volcano with a temporal resolution of ~2 h, spanning the period from 1 to 12 May 2010. The initialisation of chemistry-transport modelling with this reconstructed source allows for a reliable simulation of the evolution of the long-lived tropospheric SO2 cloud over thousands of kilometres. Heterogeneities within the plume, which mainly result from the temporal variability of the emissions, are correctly tracked over a time scale of a week. The robustness of our approach is also demonstrated by the broad similarities between the SO2 flux history determined by this study and the ash discharge behaviour estimated by other means during the phases of high explosive activity at Eyjafjallajökull in May 2010. Finally, we show how a sequential IASI data assimilation allows for a substantial improvement in the forecasts of the location and concentration of the plume compared to an approach assuming constant flux at the source. As the SO2 flux is an important indicator of the volcanic activity, this approach is also of interest to monitor poorly instrumented volcanoes from space.


2021 ◽  
Vol 13 (20) ◽  
pp. 4037
Author(s):  
Umberto Rizza ◽  
Franck Donnadieu ◽  
Salvatore Magazu ◽  
Giorgio Passerini ◽  
Giuseppe Castorina ◽  
...  

The purpose of the present paper is to investigate the effects of variable eruption source parameters on volcanic plume transport in the Mediterranean basin after the paroxysm of Mount Etna on 23 November 2013. This paroxysm was characterized by a north-east transport of ash and gas, caused by a low-pressure system in northern Italy. It is evaluated here in a joint approach considering the WRF-Chem model configured with eruption source parameters (ESPs) obtained elaborating the raw data from the VOLDORAD-2B (V2B) Doppler radar system. This allows the inclusion of the transient and fluctuating nature of the volcanic emissions to accurately model the atmospheric dispersion of ash and gas. Two model configurations were considered: the first with the climax values for the ESP and the second with the time-varying ESP according to the time profiles of the mass eruption rate recorded by the V2B radar. It is demonstrated that the second configuration produces a considerably better comparison with satellite retrievals from different sensors platforms (Ozone Mapping and Profiler Suite, Meteosat Second-Generation Spinning Enhanced Visible and Infrared Imager, and Visible Infrared Imaging Radiometer Suite). In the context of volcanic ash transport dispersion modeling, our results indicate the need for (i) the use of time-varying ESP, and (ii) a joint approach between an online coupled chemical transport model like WRF-Chem and direct near-source measurements, such as those carried out by the V2B Doppler radar system.


2022 ◽  
Author(s):  
Mathieu Lachatre ◽  
Sylvain Mailler ◽  
Laurent Menut ◽  
Arineh Cholakian ◽  
Pasquale Sellitto ◽  
...  

Abstract. Volcanic activity is an important source of atmospheric sulphur dioxide (SO2), which, after conversion into sulphuric acid, induces impacts on, among others, rain acidity, human health, meteorology and the radiative balance of the atmosphere. This work focuses on the conversion of SO2 into sulphates (, S(+VI)) in the mid-tropospheric volcanic plume emitted by the explosive eruption of Mount Etna (Italy) on Apr. 12, 2012, using the CHIMERE chemistry-transport model. Since volcanic plume location and composition depend on several often poorly constrained parameters, using a chemistry-transport model allows us to study the sensitivity of SO2 oxidation to multiple aspects such as volcanic water emissions, transition metal emissions, plume diffusion and plume altitude. Our results show that in the mid-troposphere, two pathways contribute to sulphate production, the oxidation of SO2 by OH in the gaseous phase (70 %), and the aqueous oxidation by O2 catalyzed by Mn2+ and Fe3+ ions (25 %). The oxidation in aqueous phase is the faster process, but in the mid-troposphere, liquid water is scarce, therefore the relative share of gaseous oxidation can be important. After one day in the mid-troposphere, about 0.5 % of the volcanic SO2 was converted to sulphates through the gaseous process. Because of the nonlinear dependency of the kinetics in the aqueous phase to the amount of volcanic water emitted and on the availability of transition metals in the aqueous phase, several experiments have been designed to determine the prominence of different parameters. Our simulations show that during the short time that liquid water remains in the plume, around 0.4 % of sulphates manage to quickly enter the liquid phase. Sensitivity tests regarding the advection scheme have shown that this scheme must be chosen wisely, as dispersion will impact both oxidation pathways explained above.


2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Jian Kang ◽  
Rui Jin ◽  
Xin Li ◽  
Yang Zhang

In recent decades, microwave remote sensing (RS) has been used to measure soil moisture (SM). Long-term and large-scale RS SM datasets derived from various microwave sensors have been used in environmental fields. Understanding the accuracies of RS SM products is essential for their proper applications. However, due to the mismatched spatial scale between the ground-based and RS observations, the truth at the pixel scale may not be accurately represented by ground-based observations, especially when the spatial density of in situ measurements is low. Because ground-based observations are often sparsely distributed, temporal upscaling was adopted to transform a few in situ measurements into SM values at a pixel scale of 1 km by introducing the temperature vegetation dryness index (TVDI) related to SM. The upscaled SM showed high consistency with in situ SM observations and could accurately capture rainfall events. The upscaled SM was considered as the reference data to evaluate RS SM products at different spatial scales. In regard to the validation results, in addition to the correlation coefficient (R) of the Soil Moisture Active Passive (SMAP) SM being slightly lower than that of the Climate Change Initiative (CCI) SM, SMAP had the best performance in terms of the root-mean-square error (RMSE), unbiased RMSE and bias, followed by the CCI. The Soil Moisture and Ocean Salinity (SMOS) products were in worse agreement with the upscaled SM and were inferior to the R value of the X-band SM of the Advanced Microwave Scanning Radiometer 2 (AMSR2). In conclusion, in the study area, the SMAP and CCI SM are more reliable, although both products were underestimated by 0.060 cm3 cm−3 and 0.077 cm3 cm−3, respectively. If the biases are corrected, then the improved SMAP with an RMSE of 0.043 cm3 cm−3 and the CCI with an RMSE of 0.039 cm3 cm−3 will hopefully reach the application requirement for an accuracy with an RMSE less than 0.040 cm3 cm−3.


2018 ◽  
Vol 22 (10) ◽  
pp. 5341-5356 ◽  
Author(s):  
Seyed Hamed Alemohammad ◽  
Jana Kolassa ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Pierre Gentine

Abstract. Characterizing soil moisture at spatiotemporal scales relevant to land surface processes (i.e., of the order of 1 km) is necessary in order to quantify its role in regional feedbacks between the land surface and the atmospheric boundary layer. Moreover, several applications such as agricultural management can benefit from soil moisture information at fine spatial scales. Soil moisture estimates from current satellite missions have a reasonably good temporal revisit over the globe (2–3-day repeat time); however, their finest spatial resolution is 9 km. NASA's Soil Moisture Active Passive (SMAP) satellite has estimated soil moisture at two different spatial scales of 36 and 9 km since April 2015. In this study, we develop a neural-network-based downscaling algorithm using SMAP observations and disaggregate soil moisture to 2.25 km spatial resolution. Our approach uses the mean monthly Normalized Differenced Vegetation Index (NDVI) as ancillary data to quantify the subpixel heterogeneity of soil moisture. Evaluation of the downscaled soil moisture estimates against in situ observations shows that their accuracy is better than or equal to the SMAP 9 km soil moisture estimates.


2015 ◽  
Vol 12 (4) ◽  
pp. 1793-1814
Author(s):  
F. Ninove ◽  
P. Y. Le Traon ◽  
E. Remy ◽  
S. Guinehut

Abstract. Argo observations from 2005 to 2013 are used to characterize spatial scales temperature and salinity variations from the surface down to 1500 m. Simulations are first performed to analyze the sensitivity of results to Argo sampling; they show that several years of Argo observations are required to estimate the spatial scales of ocean variability over 20° × 20° boxes. Spatial scales are then computed over several large scale areas. Zonal and meridional spatial scales (Lx and Ly which are also zero crossing of covariance functions) vary as expected with latitudes. Scales are of about 100 km at high latitudes and more of 700 km in the Indian and Pacific equatorial/tropical regions. Zonal and meridional scales are similar: except in these tropical/equatorial regions where zonal scales are much larger (by a factor of 2 to 3) than meridional scales. Spatial scales are the largest close to the surface and have a general tendency for temperature to increase in deeper layers. There are significant differences between temperature and salinity scales, in particular, in the deep ocean. Results are consistent with previous studies based on sparse in-situ observations or satellite altimetry. They provide, however, for the first time a global description of temperature and salinity scales of variability and a characterization of their variations according to depths.


Sign in / Sign up

Export Citation Format

Share Document