Iodic acid formation and yield from iodine photolysis at the CERN CLOUD chamber

Author(s):  
Henning Finkenzeller ◽  
Siddharth Iyer ◽  
Theodore K. Koenig ◽  
Xu-Cheng He ◽  
Mario Simon ◽  
...  

<p>Iodine oxoacids are key species involved in the cycling of iodine between the gas- and aerosol phases. Iodic acid (HIO<sub>3</sub>) nucleates particles more efficiently than sulfuric acid and ammonia at comparable concentrations, and grows them at comparable rates, but the formation mechanism of HIO<sub>3</sub> is essentially unknown. As a result, atmospheric models of iodine chemistry are currently incomplete. Proposed precursors for iodine oxoacids include iodine atoms and higher iodine oxides (e.g., I<sub>2</sub>O<sub>2</sub>, I<sub>2</sub>O<sub>3</sub>, I<sub>2</sub>O<sub>4</sub>), but theoretical predictions have not currently been assessed under experimental conditions that approximate the open ocean marine atmosphere. We present results from laboratory experiments at the CLOUD chamber that observe rapid oxoacid formation from photolysis of iodine (I<sub>2</sub>) at green wavelengths, in the presence of ozone and variable relative humidity (0-80%). Under these (soft) experimental conditions iodine oxide (IO) radical concentrations closely approximate those found in the remote marine boundary layer. A chemical box model is constrained by measurements of I<sub>2</sub>, ozone, RH, photolysis frequencies (i.e., I<sub>2</sub>, IO, OIO, HOI, I<sub>x</sub>O<sub>y</sub>) and known losses of gases to particles and the chamber walls, and evaluated using time resolved measurements of IO, OIO, and I<sub>x</sub>O<sub>y</sub> species in the chamber. Hypothesized mechanisms for HIO<sub>3</sub> formation - either proposed in the literature or motivated from our observations - are then discussed in terms of their ability to explain the observed amounts (yield), and the temporal evolution of HIO<sub>3</sub>. Finally, the atmospheric relevance of the laboratory findings is assessed in context of unique field measurements at the Maido Observatory, La Reunion, during spring 2018, where IO radicals and HIO<sub>3</sub> were measured simultaneously in the remote free troposphere.</p>

2021 ◽  
pp. 1-33
Author(s):  
Eric DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.


2017 ◽  
Vol 10 (12) ◽  
pp. 5075-5088 ◽  
Author(s):  
António Dias ◽  
Sebastian Ehrhart ◽  
Alexander Vogel ◽  
Christina Williamson ◽  
João Almeida ◽  
...  

Abstract. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min−1, respectively. During steady-state calibration runs between −70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.


2018 ◽  
Vol 6 ◽  
Author(s):  
A. Rigby ◽  
J. Katz ◽  
A. F. A. Bott ◽  
T. G. White ◽  
P. Tzeferacos ◽  
...  

Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ${\geqslant}$kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
A. J. Newman ◽  
J. C. Mollendorf

A simple semi-empirical model for predicting the peak overpressure field that results when a shock emerges from a circular shock tube is presented and validated. By assuming that the shape of the expanding shock remains geometrically similar after an initial development period, an equation that describes the peak overpressure field in the horizontal plane containing the shock tube’s centerline was developed. The accuracy of this equation was evaluated experimentally by collecting peak overpressure field measurements along radials from the shock tube exit at 0 deg, 45 deg, and 90 deg over a range of shock Mach numbers from 1.15 to 1.45. It was found that the equation became more accurate at higher Mach numbers with percent differences between experimental measurements and theoretical predictions ranging from 1.1% to 3.6% over the range of Mach numbers considered. (1) Shocks do propagate in a geometrically similar manner after some initial development length over the range of Mach numbers considered here. (2) The model developed here gives reasonable predictions for the overpressure field from a shock emerging from a circular shock tube. (3) Shocks are expected to be completely symmetric with respect to the shock tube’s centerline, and hence, a three dimensional overpressure field may be predicted by the model developed here. (4) While there is a range of polar angle at which the shock shape may be described as being spherical with respect to the shock tube’s exit, this range does not encompass the entirety of the half space in front of the shock tube, and the model developed here is needed to accurately describe the entire peak overpressure field.


2010 ◽  
Vol 51 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Shiyao Bian ◽  
James F. Driscoll ◽  
Brian R. Elbing ◽  
Steven L. Ceccio

2021 ◽  
Author(s):  
Xu-Cheng He ◽  
Siddharth Iyer ◽  
Yee Jun Tham ◽  
Mikko Sipilä ◽  
Jasper Kirkby ◽  
...  

<p>Aside from capable of influencing atmospheric oxidation capacity, iodine species are known to contribute to particle formation processes. Iodine particle formation was commonly believed to be important in coastal regions only, e.g. Mace Head, but emerging evidence shows that it also plays an important role in Arctic regions.</p><p> </p><p>Although the nucleation mechanisms have been proposed to involve mainly iodine oxides, recent field observations suggest that HIO<sub>3</sub> plays a key role in the cluster formation processes. Despite these advances, experiments with atmospherically relevant vapor concentrations are lacking and the time evolution of charged cluster formation processes has never been detected at the molecular level to validate the mechanisms observed in the field.</p><p> </p><p>In this study, we carried out iodine particle formation experiments in the CLOUD chamber at CERN. The precursor vapor (I<sub>2</sub>) and oxidation products were carefully controlled at concentrations relevant to those in marine boundary layer conditions. Natural galactic cosmic rays were used to produce ions in the chamber which further initiated ion-induced nucleation processes. An atmospheric pressure interface time-of-flight mass spectrometer was used to trace the time evolution of charged iodine clusters which revealed HIO<sub>3</sub> as the major contributor.</p>


Author(s):  
Michal M. Mielnik ◽  
Lars R. Sætran

A novel seeding method, permitting high out-of-plane resolution and instantaneous (time-resolved) velocity field measurements using a standard Microscale Particle Image Velocimetry (micro-PIV) setup, is presented. The method relies on selective seeding of a thin fluid layer within an otherwise particle-free flow. The generated particle sheet defines the depth and position of the measurement plane, independently of the details of the optical setup. Therefore, for low magnification objectives in particular, considerable improvement in the measurement depth is possible. Selectively seeded micro-PIV (SeS-PIV) is applied to a microchannel flow, and the measured instantaneous velocity fields are in excellent agreement with the theoretical solution for the flowfield. The currently presented measurements have a depth-wise resolution 20% below the estimated optical measurement depth of the micro-PIV system. In principle, a measurement depth corresponding to the diameter of the tracer particles may be achieved.


2019 ◽  
Vol 116 (51) ◽  
pp. 25900-25908 ◽  
Author(s):  
Evan P. Starr ◽  
Erin E. Nuccio ◽  
Jennifer Pett-Ridge ◽  
Jillian F. Banfield ◽  
Mary K. Firestone

Viruses impact nearly all organisms on Earth, with ripples of influence in agriculture, health, and biogeochemical processes. However, very little is known about RNA viruses in an environmental context, and even less is known about their diversity and ecology in soil, 1 of the most complex microbial systems. Here, we assembled 48 individual metatranscriptomes from 4 habitats within a planted soil sampled over a 22-d time series: Rhizosphere alone, detritosphere alone, rhizosphere with added root detritus, and unamended soil (4 time points and 3 biological replicates). We resolved the RNA viral community, uncovering a high diversity of viral sequences. We also investigated possible host organisms by analyzing metatranscriptome marker genes. Based on viral phylogeny, much of the diversity wasNarnaviridaethat may parasitize fungi orLeviviridae, which may infect Proteobacteria. Both host and viral communities appear to be highly dynamic, and rapidly diverged depending on experimental conditions. The viral and host communities were structured based on the presence of root litter. Clear temporal dynamics byLeviviridaeand their hosts indicated that viruses were replicating. With this time-resolved analysis, we show that RNA viruses are diverse, abundant, and active in soil. When viral infection causes host cell death, it may mobilize cell carbon in a process that may represent an overlooked component of soil carbon cycling.


Sign in / Sign up

Export Citation Format

Share Document