Lidar remote sensing of atmospheric aerosols: investigation of involved particles sizes using Backscattering Ångström Exponents and application to the remote observation of new particle formation events 

Author(s):  
Alain Miffre ◽  
Danaël Cholleton ◽  
Patrick Rairoux

<p>This abstract is dedicated to dual-wavelength polarization lidars (2β+2δ) and related particles backscattering Ångström exponents BAE<sub>p</sub>, as nowadays remotely evaluated by atmospheric multi-wavelength lidar instruments (Veselovskii et al., ACP, 2016). We here present two new lidar remote sensing developments applicable to every multi-wavelengths polarization lidars, as published in Miffre et al. (Rem. Sens. 2019, Opt. Lett. 2020).</p><p>As a first development, we investigate the size, shape and complex refractive index dependence of measured backscattering Ångström exponents (Miffre et al., Opt. Lett., 2020). If BAE<sub>p</sub> is generally considered as a particles size indicator, it actually depends on the particles size, shape (Mehri et al., Atm. Res., 2018) and complex refractive index as β<sub>p</sub> does. From a precise analysis of the polarization state of the backscattered radiation and of its wavelength dependence, in two components particle mixtures (p) = {s, ns} involving spherical (s) and nonspherical (ns)-particles, we could establish the relationship between BAE<sub>p</sub>, BAE<sub>s</sub> and BAE<sub>ns</sub>. Then, by numerically simulating the two latter, we could discuss on the range of involved particle sizes and complex refractive indices.</p><p>The second development is related to the remote sensing observation of a new particle formation event with a dual-wavelength polarization lidar (Miffre et al. Rem. Sens. 2019). Where previous thoughts were that it is not feasible due to the small size of involved particles, we identified the requirements ensuring a (UV, VIS) polarization lidar to be sensitive to the subsequent particles growth following nucleation events promoted by nonspherical mineral dust particles. The presentation will explicit these optical requirements in terms of polarization and spectroscopy, as recently published in (Miffre et al., Rem. Sens., 2019).</p><p>The oral presentation will first present our dual-wavelength polarization lidar remote sensing instrument (2β+2δ), based on an unique laboratory Pi-polarimeter (Miffre et al., JQSRT, 2016). Special focus will be made on the (UV, VIS) calibration of the polarization lidar, as a decisive point for precise observations and interpretations. As an application case study, the oral presentation will then consider the lidar remote sensing observation of a nucleation event promoted by mineral dust. There, the involved particles sizes of freshly nucleated sulfuric acid particles and mineral dust will be retrieved by considering the above backscattering Ångström exponents analysis. As expected, the retrieved involved particles sizes reveal the underlying physical-chemistry of the nucleation process promoted by mineral dust (Dupart et al., PNAS, 2012). We believe this work may then interest a wide community of scientists.</p><p>Veselovskii, I., P. Goloub, D. N. Whiteman, A. Diallo, T. Ndiaye, A. Kolgotin, and O. Dubovik, ACP, <strong>16</strong>(11), (2016).<br>Dupart, Y., A. Wiedensohler, H. Hermann, A. Miffre, P. Rairoux, B. D’Anna and C. George, PNAS, 109, 51, (2012).<br>Miffre, A., T. Mehri, M. Francis and P. Rairoux, JQSRT, 169, 79-90, (2016).<br>Mehri, T., P. Rairoux, T. Nousiainen, A. Miffre, Atm. Res. <strong>203</strong>, 44-61 (2018).<br>Miffre A, D Cholleton, T. Mehri and P Rairoux, Rem. Sens., 11(15), 1761, (2019).<br>Miffre, A., D. Cholleton, P. Rairoux, Opt. Lett.<strong> 45</strong>, 5, 1084-1087, (2020).</p>

2017 ◽  
Vol 17 (3) ◽  
pp. 1901-1929 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Yves Balkanski ◽  
Lorenzo Caponi ◽  
Mathieu Cazaunau ◽  
...  

Abstract. Modeling the interaction of dust with long-wave (LW) radiation is still a challenge because of the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known about the variability of the refractive index as a function of the dust mineralogical composition, which depends on the specific emission source, and its size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially invariant and time-constant value for the dust LW refractive index. In this paper, the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from 19 natural soils from 8 regions: northern Africa, the Sahel, eastern Africa and the Middle East, eastern Asia, North and South America, southern Africa, and Australia. Soil samples were selected from a total of 137 available samples in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (3–15 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the imaginary LW refractive index (k) of dust varies greatly both in magnitude and spectral shape from sample to sample, reflecting the differences in particle composition. In the 3–15 µm spectral range, k is between ∼ 0.001 and 0.92. The strength of the dust absorption at ∼ 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. The imaginary part (k) is observed to vary both from region to region and for varying sources within the same region. Conversely, for the real part (n), which is in the range 0.84–1.94, values are observed to agree for all dust samples across most of the spectrum within the error bars. This implies that while a constant n can be probably assumed for dust from different sources, a varying k should be used both at the global and the regional scale. A linear relationship between the magnitude of the imaginary refractive index at 7.0, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found. We suggest that this may lead to predictive rules to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition, or conversely, to estimate the dust composition from measurements of the LW extinction at specific wavebands. Based on the results of the present study, we recommend that climate models and remote sensing instruments operating at infrared wavelengths, such as IASI (infrared atmospheric sounder interferometer), use regionally dependent refractive indices rather than generic values. Our observations also suggest that the refractive index of dust in the LW does not change as a result of the loss of coarse particles by gravitational settling, so that constant values of n and k could be assumed close to sources and following transport. The whole dataset of the dust complex refractive indices presented in this paper is made available to the scientific community in the Supplement.


2016 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Yves Balkanski ◽  
Lorenzo Caponi ◽  
Mathieu Cazaunau ◽  
...  

Abstract. Modelling the interaction of dust with longwave (LW) radiation is still a challenge due to the scarcity of information on the complex refractive index of dust from different source regions. In particular, little is known on the variability of the refractive index as a function of the dust mineralogical composition, depending on the source region of emission, and the dust size distribution, which is modified during transport. As a consequence, to date, climate models and remote sensing retrievals generally use a spatially-invariant and time-constant value for the dust LW refractive index. In this paper the variability of the mineral dust LW refractive index as a function of its mineralogical composition and size distribution is explored by in situ measurements in a large smog chamber. Mineral dust aerosols were generated from nineteen natural soils from Northern Africa, Sahel, Middle East, Eastern Asia, North and South America, Southern Africa, and Australia. Soil samples were selected from a total of 137 samples available in order to represent the diversity of sources from arid and semi-arid areas worldwide and to account for the heterogeneity of the soil composition at the global scale. Aerosol samples generated from soils were re-suspended in the chamber, where their LW extinction spectra (2–16 µm), size distribution, and mineralogical composition were measured. The generated aerosol exhibits a realistic size distribution and mineralogy, including both the sub- and super-micron fractions, and represents in typical atmospheric proportions the main LW-active minerals, such as clays, quartz, and calcite. The complex refractive index of the aerosol is obtained by an optical inversion based upon the measured extinction spectrum and size distribution. Results from the present study show that the LW refractive index of dust varies greatly both in magnitude and spectral shape from sample to sample, following the changes in the measured particle composition. The real part (n) of the refractive index is between 0.84 and 1.94, while the imaginary part (k) is ~ 0.001 and 0.92. For instance, the strength of the absorption at ~ 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. A linear relationship between the magnitude of the refractive index at 7.0, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found. We suggest that this may lead to predictive rules to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition, or conversely, to estimate the dust composition from measurements of the LW extinction at specific wavebands. Based on the results of the present study, we recommend using refractive indices specific for the different source regions, rather than generic values, in climate models and remote sensing applications. Our observations also suggest that the refractive index of dust in the LW does not change due to the loss of coarse particles by gravitational settling, so that a constant value could be assumed close to sources and during transport. The results of the present study also clearly suggest that the LW refractive index of dust varies at the regional scale. This regional variability has to be characterized further in order to better assess the influence of dust on regional climate, as well as to increase the accuracy of satellite retrievals over regions affected by dust. We make the whole dataset of the dust complex refractive indices obtained here available to the scientific community by publishing it in the supplementary material to this paper.


2019 ◽  
Vol 11 (15) ◽  
pp. 1761 ◽  
Author(s):  
Alain Miffre ◽  
Danaël Cholleton ◽  
Tahar Mehri ◽  
Patrick Rairoux

Observations of new particle formation events in free troposphere are rather seldom and limited in time and space, mainly due to the complexity and the cost of the required on-board instrumentation for airplane field campaigns. In this paper, a calibrated (UV, VIS) polarization elastic lidar (2β + 2δ) is used to remotely sense new particle formation events in the free troposphere in the presence of mineral dust particles. Using very efficient (UV, VIS) light polarization discriminators (1:107) and after robust calibration, the contribution of mineral dust particles to the co-polarized (UV, VIS) lidar channels could be removed, to reveal the backscattering coefficient of the newly nucleated particles after these numerous particles have grown to a size detectable with our lidar. Since our polarization and wavelength cross-talks are fully negligible, the observed variation in the (UV, VIS) particle backscattering time–altitude maps could be related to variations in the particle microphysics. Hence, day and nighttime differences, at low and high dust loadings, were observed in agreement with the observed nucleation process promoted by mineral dust. While light backscattering is more sensitive to small-sized particles at the UV lidar wavelength of 355 nm, such new particle formation events are here for the first time also remotely sensed at the VIS lidar wavelength of 532 nm at which most polarization lidars operate. Moreover, by addressing the (UV, VIS) backscattering Angstrom exponent, we could discuss the particles’ sizes addressed with our (UV, VIS) polarization lidar. As nucleation concerns the lowest modes of the particles’ size distribution, such a methodology may then be applied to reveal the lowest particle sizes that a (UV, VIS) polarization lidar can address, thus improving our understanding of the vertical and temporal extent of nucleation in free troposphere, where measurements are rather seldom.


2014 ◽  
Vol 14 (8) ◽  
pp. 3865-3881 ◽  
Author(s):  
M. I. García ◽  
S. Rodríguez ◽  
Y. González ◽  
R. D. García

Abstract. A climatology of new particle formation (NPF) events at high altitude in the subtropical North Atlantic is presented. A 4-year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO2, NOx, and O3), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmosphere Watch (GAW) observatory (2373 m above sea level; Tenerife, Canary Islands) was analysed. NPF is associated with the transport of gaseous precursors from the boundary layer by orographic buoyant upward flows that perturb the low free troposphere during daytime. On average, 30% of the days contained an NPF event. Mean values of the formation and growth rates during the study period were 0.46 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May–August), when these events account for 50–60% of the days per month. Monthly mean values of the formation and growth rates exhibit higher values in this season, 0.49–0.92 cm−3 s−1 and 0.48–0.58 nm h−1, respectively. During NPF events, SO2, UV radiation and upslope winds showed higher values than during non-events. The overall data set indicates that SO2 plays a key role as precursor, although other species seem to contribute during some periods. Condensation of sulfuric acid vapour accounts for most of the measured particle growth during most of the year (~70%), except for some periods. In May, the highest mean growth rates (~0.6 nm h−1) and the lowest contribution of sulfuric acid (~13%) were measured, suggesting a significant involvement of other condensing vapours. The SO2 availability seems also to be the most influencing parameter in the year-to-year variability in the frequency of NPF events. The condensation sink showed similar features to other mountain sites, showing high values during NPF events. Summertime observations, when Izaña is within the Saharan Air Layer, suggest that dust particles may play a significant role acting as coagulation sink of freshly formed nucleation particles. The contribution of dust particles to the condensation sink of sulfuric acid vapours seems to be modest (~8% as average). Finally, we identified a set of NPF events in which two nucleation modes, which may evolve at different rates, occur simultaneously and for which further investigations are necessary.


2011 ◽  
Vol 11 (7) ◽  
pp. 21363-21427 ◽  
Author(s):  
R. Wagner ◽  
T. Ajtai ◽  
K. Kandler ◽  
K. Lieke ◽  
C. Linke ◽  
...  

Abstract. We have retrieved the wavelength-dependent imaginary parts of the complex refractive index for five different Saharan dust aerosol particles of variable mineralogical composition at wavelengths between 305 and 955 nm. The dust particles were generated by re-dispersing soil samples into a laboratory aerosol chamber, typically yielding particle sizes with mean diameters ranging from 0.3 to 0.4 μm and maximum diameters from 2 to 4 μm. The extinction and absorption coefficients as well as the number size distribution of the dust particles were simultaneously measured by various established techniques. An inversion scheme based on a spheroidal dust model was employed to deduce the refractive indices. The retrieved imaginary parts of the complex refractive index were in the range from 0.003 to 0.005, 0.005 to 0.011, and 0.016 to 0.050 at the wavelengths 955, 505, and 305 nm. The hematite content of the dust particles was determined by electron-microscopical single particle analysis. Hematite volume fractions in the range from 1.1 to 2.7 % were found for the different dusts, a range typical for atmospheric mineral dust. We have performed a sensitivity study to assess how accurately the retrieved imaginary refractive indices could be reproduced by calculations with mixing rule approximations using the experimentally determined hematite contents as input.


2021 ◽  
Author(s):  
Sujung Go ◽  
Alexei Lyapustin ◽  
Gregory L. Schuster ◽  
Myungje Choi ◽  
Paul Ginoux ◽  
...  

Abstract. The iron-oxide content of dust in the atmosphere and most notably its apportionment between hematite (α-Fe2O3) and goethite (α-FeOOH) are key determinants in quantifying dust's light absorption, its top of atmosphere UV radiances used for dust monitoring, and ultimately shortwave dust direct radiative effects (DRE). Hematite and goethite column mass concentrations and iron-oxide mass fractions of total dust mass concentration were retrieved from the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) measurements in the ultraviolet–visible (UV–Vis) channels. The retrievals were performed for dust-identified aerosol plumes using aerosol optical depth (AOD) and spectral imaginary refractive index provided by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm over six continental regions (North America, North Africa, West Asia, Central Asia, East Asia, and Australia). The dust particles are represented as an internal mixture of non-absorbing host and absorbing hematite and goethite. We use the Maxwell–Garnett effective medium approximation with carefully selected complex refractive indices of hematite and goethite that produce mass fractions of iron oxides species consistent with in situ values found in the literature to derive the hematite and goethite volumetric/mass concentrations from MAIAC EPIC products. We compared the retrieved hematite and goethite concentrations with in situ dust aerosol mineralogical content measurements, as well as with published data. Our data display variations within the published range of hematite, goethite, and iron-oxide mass fractions for pure mineral dust cases. A specific analysis is presented for 15 sites over the main dust source regions. Sites in the central Sahara, Sahel, and Middle East exhibit a greater temporal variability of iron oxides relative to other sites. Niger site (13.52° N, 2.63° E) is dominated by goethite over Harmattan season with median of ~2 weight percentage (wt.%) of iron-oxide. Saudi Arabia site (27.49° N, 41.98° E) over Middle East also exhibited surge of goethite content with the beginning of Shamal season. The Sahel dust is richer in iron-oxide than Saharan and northern China dust except in Summer. The Bodélé Depression area shows a distinctively lower iron-oxide concentration (~1 wt. %) throughout the year. Finally, we show that EPIC data allow to constrain the hematite refractive index. Specifically, we select 5 out of 13 different number of hematite refractive indices widely variable in published laboratory studies by constraining the iron-oxide mass ratio to the known measured values. Provided climatology of hematite and goethite mass fractions across main dust regions of the Earth will be useful for dust shortwave DRE studies and climate modeling. 


2021 ◽  
Author(s):  
Perla Alalam ◽  
Hervé Herbin

<p>Large desert lands such as Sahara, Gobi or Australia present main sources of atmospheric mineral dust caused by intense dust storms. Transported dust particles undergo physical and chemical changes affecting their microphysical and optical properties. This modifies their scattering and absorption properties and alters the global atmospheric radiative budget.</p><p>Currently, remote sensing techniques represent a powerful tool for quantitative atmospheric measurements and the only means of analyzing its evolution from local to global scale. In order to improve the knowledge of atmospheric aerosol distributions, many efforts were made particularly in the development of hyperspectral infrared spectrometers and processing algorithms. However, to fully exploit these measurements, a perfect knowledge of Complex Refractive Index (CRI) is required.</p><p>In that purpose, a new methodology <sup></sup>based on laboratory measurements of mineral dust in suspension coupled with an optimal estimation method has been developed. This approach allows getting access to CRI of several desert samples with various chemical compositions.</p><p>Here, we present the first results of the physical parameters (effective radius and concentration) retrievals using Infrared Atmospheric Sounding Interferometer IASI data, during dust storm events. The latter use the CRI of different desert samples obtained in laboratory and a new radiative transfer algorithm (ARAHMIS) developed at Laboratoire d’Optique Atmosphérique LOA.</p>


Sign in / Sign up

Export Citation Format

Share Document