Isotopic evidence reveals  persistent microbial residues in soil

Author(s):  
Kirsten Hofmockel ◽  
Sheryl Bell ◽  
Chris Kasanke

<p>Microbial derivatives and necromass are dominant sources of soil organic matter (SOM), yet the specific microbiological and geochemical reactions leading to the persistence of microbial compounds in SOM remains to be discovered. Identification of the microbial taxa and classes of microbial-derived compounds that are selectively preserved may enhance our ability to manage SOM, particularly in agroecosystems. We examined how perennial and annual biofuel cropping systems influence the production and selective preservation of microbial residues. Our experiment was replicated on a sandy and a silty loam to test the relative importance of microbial (biotic) and mineral (abiotic) filters on necromass accumulation and persistence. Using a <sup>13</sup>C-labeling incubation experiment, we tested the effects of cropping system and soil texture on the production and persistence of microbial-derived residues. Soils were collected from sandy loams at the Kellogg Biological Station (MI, USA) and silty loams at the Arlington Agricultural Research Station (WI, USA). These soils were amended with <sup>13</sup>C-labeled glucose, which was rapidly incorporated into microbial biomass. After 2 months, ~50% of the added <sup>13</sup>C remained in the bulk soil. Approximately 30% of the <sup>13</sup>C remaining in the bulk soil was recovered in the lipid, protein, and metabolite pools. Lipids contained the most <sup>13</sup>C (16%) and the contribution was similar in both soils. Both soils had similar protein pools, but protein from the sandy loam was significantly more enriched than protein from the silty loam. The pool of metabolites was small, but highly enriched, suggesting substantial recycling over the 2-month incubation. The majority (40%) of the whole soil <sup>13</sup>C persisted in the SOM even after repeat extractions. The remaining ~30% of the whole soil <sup>13</sup>C was recovered in a complex of remaining unknown debris that separates from the soil at the solvent interphase with the protein but could not be solubilized. We provide novel evidence of the carbon pools that contribute to persistent microbial residues in soil. Our results suggest that metabolites may be more important than was previously recognized. Ongoing work is identifying the labeled metabolites and characterizing the chemistry of the highly enriched protein residue fraction.</p>

2018 ◽  
Vol 10 (4) ◽  
pp. 320-332
Author(s):  
H.K. Prasai ◽  
S.K. Sah ◽  
A.K. Gautam ◽  
A.P. Regmi

Abstract. The adoption of Conservation agriculture (CA) contributes to sustainable production and its advantages include lower inputs and stable yields. This study was conducted in the research field of Regional Agricultural Research Station, Bhagetada, Dipayal, Doti during 2014 and 2015 to identify the effect of CA on grain yield and income of maize in Maize based cropping system. Both conservation and conventional agricultural (ConvA) practices were evaluated on two maize based cropping systems namely maize-wheat-mungbean (M-W-MB) and maize-lentil-mungbean (M-L-MB). For this purpose two maize varieties namely Raj Kumar and Arun-2 were used. The average productivity of maize under M-L-MB cropping system was 1.6% higher (5.75 t/ha) than M-W-MB cropping system (5.66 t/ha). The average grain yield of maize under CA was 16.7% higher (6.15 t/ha) than ConvA (5.27 t/ha). Rajkumar produced 43% higher average grain yield (6.73 t/ha) than Arun-2 variety (4.69 t/ha). The average net benefit was slightly higher (US$ 597.33/ha) under M-L-MB cropping system than M-W-MB cropping system (US$ 573.89/ha). Similarly, the average net benefit from CA was 102% higher (US$ 783.67/ha) than ConvA (US$ 386.79/ha). Rajkumar variety gave 127% higher average net benefit (US$ 813.49/ha) than Arun-2 (US$ 357.81/ha). The average benefit - cost (B:C) ratio of M-L-MB cropping system was slightly higher (1.72) than the average B:C ratio of M-W-MB cropping system (1.70). The average B:C ratio of CA was 42% higher (2.01) than ConvA (1.41). The average B:C ratio of Rajkumar variety was found 33% higher (1.95) than Arun-2 (1.46). The higher grain yield, net profit and B:C ratio were found in CA practices under M-L-MB cropping system and Rajkumar variety. This study suggests that hybrid maize planting and the adoption of M-L-MB cropping system should be used to increase grain yield and economic performance under CA practices.


2017 ◽  
Vol 109 (3) ◽  
pp. 481 ◽  
Author(s):  
Abd El-Hafeez Ahmed ZOHRY ◽  
Khadra A. ABBADY ◽  
Enshrah I.M. EL-MAAZ ◽  
Hoda M.R.M. AHMED

Six field experiments were conducted in Giza Agricultural Research Station, Egypt during 2010, 2011 and 2012 growing seasons to study the effect of two types of N fertilizers (urea and urea form as slow-release (UF)) on intercropping cowpea with sunflower and intercropping wheat with pea. A split plot design with three replications was used. The results indicated that insignificant effect of cropping systems was found for sunflower and significant effect was found for cowpea yield. Significant effect of N fertilizers was found on sunflower and insignificant effect was found for cowpea yield. Furthermore, insignificant effect of interaction of cropping systems and N fertilizers was found for sunflower and significant effect was found for cowpea yield. With respect to wheat and pea intercropping, both crops were significantly affected by intercropping system. Significant effect of N fertilizers was found on wheat and insignificant effect was found for pea yield. Both wheat and pea were significantly affected by the interaction of cropping system and N fertilizers. Yield advantage was achieved because land equivalent ratio exceeded 1.00. Dominance analysis proved that leguminous crop is dominated component. Thus, the studied intercropping systems could be recommended to farmers due to its beneficial returns.


2020 ◽  
Vol 8 (2) ◽  
pp. 146-151
Author(s):  
B. Rajendra Kumar ◽  
S. Govinda Rao ◽  
P Kondababu

A field experiment was conducted during 2011 rabi and 2012 kharif at Agricultural Research Station, Yellamanchili. In the first year of experimentation rabi 2011-12, sole crop sesamum was sown in bulk as base crop or main crop to study sesame based cropping system with other sequential crops greengram, groundnut, cowpea, ragi, fodder cowpea and sunhemp, sunhemp fodder sown during kharif . Average yield of sesamum sown during rabi was 380 kg/ha. During kharif 2012 all the crops were sown on 12-06-2012, the yields realized by different crops were converted into sesamum equivalent yield. The prevailing sesame- horsegram sequence cropping system is not at all remunerative to the farmers and hence introduction of new crops in the cropping system with, Maize, Ragi, ID crops and with other cropping systems were tried when there is deficit in rain fall for maximum profitability. The initial soil sample analysis revealed a pH of 6.7, Electrical Conductivity dsm-1 of 0.17, Organic Carbon % of 0.51in the experimental site. Available N was 247 kg/ha, P2O5 29 and available K2O was 262 kg/ha. The results revealed that the cost of cultivation, gross income, net income and the BC ratio was highest for T7 (Sesame-maize). The same is the case with rabi season also, where in the net income and the benefit cost ratio was Rs.50329 and 4.35, respectively. In the cropping sequence, highest BC ratio was recorded with T7- Sesame- maize - sunhemp (Green manure) 3.91 with sesamum and maize crop only, Green manure crop (Sunhemp) is an added advantage crop to improve soil fertility. The other highest recorded B C ratio was with Sesamum-ragi and Sesamum- cowpea based cropping system with 2.92 and 2.83.


Author(s):  
Firdoz Shahana ◽  
M. Goverdhan ◽  
S. Sridevi ◽  
B. Joseph

A field experiment was conducted during 2016-17 at AICRP on Integrated Farming Systems, Regional Sugarcane and Rice Research Station, Rudrur to diversify existing rice-rice cropping system with less water requiring crops under irrigated dry conditions for vertisols of Northern Telangana Zone. The experiment was laid out with twelve cropping systems as treatments in Randomized Block Design (RBD) with three replications. The twelve combinations of cropping systems tested during kharif and rabi seasons were rice – rice (check), maize + soybean (2:4) – tomato, maize + soybean (2:4) - rice, maize - sunflower + chickpea (2:4), maize - chickpea, Bt cotton + soybean (1:2) on broadbed – sesame + groundnut (2:4), Bt cotton - sesame + blackgram (2:4), soybean – wheat, soybean – sunflower + chickpea (2:4), turmeric – sesame, turmeric + soybean (1:2) on flat bed – bajra and turmeric + soybean (1:2) on broadbed – sesame + blackgram (2:4). On system basis, significantly higher productivity in terms of rice equivalent yield (REY) of 23830 kg ha-1 was recorded with turmeric+soybean (1:2) BBF– sesame+blackgram (2:4) turmeric – sesame cropping sequence. However it was on par with turmeric – sesame and turmeric + soybean (1:2) on flat bed – bajra crop sequence with productivity of 23332 kg ha-1 and 21389 kg ha-1 respectively. Lower productivity was recorded with rice-rice cropping system (10725 kg ha-1). Significantly higher system net returns were recorded with Bt. cotton – sesame + black gram (2:4) on BBF (Rs222838 ha-1) closely followed by Bt Cotton + Soybean (1:2) (BBF) - Sesamum + Groundnut (2:4) (Rs221160 ha-1) and Maize+soybean (2:4)–tomato (Rs212909 ha-1). Lower system net returns were recorded in conventional rice-rice system (Rs88179 ha-1). Bt. cotton – sesame + black gram (2:4) and Bt Cotton + Soybean (1:2) (BBF)- Sesamum + Groundnut ((2:4) and Maize+soybean (2:4)–tomato were economically superior with REE of 152.71%, 150.81% and 141.45%. Rice- Rice cropping adopted by majority of farmers is less productive and economically inferior indicating wider scope of diversifying existing rice- rice cropping system with high productive, economically viable cropping systems in vertisols of Northern Telangana Zone.


Author(s):  
S B Yogananda ◽  
P Thimmegowda ◽  
G K Shruthi

A field experiment was carried out during kharif 2013, 2014, 2015 and 2016 at Zonal Agricultural Research Station, V. C. Farm, Mandya to study the performance of cowpea under organic production system in red sandy loam soil. The results revealed that application of 100% N equivalent compost + recommended FYM (10 t/ha) + beejamrutha (seed treatment) + jeevamrutha (500 liter/ha) recorded significantly higher grain yield during all the years of experimentation (2056, 1987, 2108 and 2365 kg/ha, respectively) and also in their pooled data (grain yield 2129 kg/ha). This increased yield was attributed to more availability of nitrogen (289.5 kg/ha), phosphorus (40.5 kg/ha) and potassium (182.3 kg/ha) in the soil compared to other treatments. The benefit: cost ratio was higher with application of 100% N equivalent compost + jeevamrutha + beejamrutha (2.81). Soil chemical properties, viz. soil pH, organic carbon content and electric conductivity, were not influenced significantly by application of organic manures. However, there was an improvement in the soil chemical properties (289.5, 40.5 and 182.3 N, P2O5 and K2O kg/ha, respectively) compared to initial soil data (229, 19.2 and 135 NPK kg/ha).


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 549
Author(s):  
Nicola Silvestri ◽  
Nicola Grossi ◽  
Marco Mariotti ◽  
Iduna Arduini ◽  
Lorenzo Guglielminetti ◽  
...  

Cover crops (CCs) are able to affect subsequent crop behaviour by acting on many soil variables and affecting the dynamics of different ecological processes. This study aimed to investigate the effects of introducing CC in continuous-maize cropping systems within Mediterranean areas. The experimental site was located in Central Italy, on a sandy loam and the research activity was carried out over two years (2019–2020). The two cropping systems in comparison differed from each other in terms of the CC cultivation: TR (treated, with CC) and CO (control, without CC). In both years, we observed a significant reduction (p < 0.05) of soil nitrate and water content for the TR system. In the shallowest layer (0–30 cm), nitrate content was reduced by up −80% and −65% (July 2019 and 2020), whereas soil moisture showed decreases ranging from −13% (July 2019) to −34% (May 2019). In 2019, the TR-maize (Zea mays L.) yield was statistically lower than CO (−443 g dm m−2), whereas in 2020 the yields of the two systems resulted statistically equivalent. This different behaviour can be explained with the serious delay in the CC sowing occurred in 2019 (12 December). Conversely, an increase in the apparent remaining N in the soil (+140 and +133 kg N ha−1 for 2019 and 2020, respectively) and in the C (carbon) inputs (+4.78 and +7.39 t dm ha−1 of biomass) were pointed out for the TR system. The large use of inputs in Mediterranean maize cropping systems limited some of the benefits from CCs, but their suitability has to be evaluated by considering all the involved effects, some of which need a long time to become appreciable.


2020 ◽  
Vol 8 (2) ◽  
pp. 152-156
Author(s):  
Moola Ram

An experiment on sesame intercropping system was conducted during kharif (rainy) season of 2017 on sandy loam soil (8.72 pH, 0.88 EC dS m-1), with low nitrogen (137 kg N ha-1), medium phosphorus (14.4 kg ha-1) and high potassium content (357 kg ha-1) at Agricultural Research Station, Mandor, Jodhpur in randomized block design with 3 replications. Among 7 treatments (T1 – Sole sesame, T2 – Sesame + Urdbean in 3:1, T3 – Sesame + Urdbean in 4:2, T4 – Sesame + Mungbean in 3:1, T5 – Sesame + Mungbean in 4:2, T6 – Sesame + Mothbean in 3:1, T7 – Sesame + Mothbean in 4:2 row ratio), it was found that intercropping of sesame with mungbean in ratio 3:1 resulted significantly higher total productivity and net returns (541 kg ha-1 & Rs. 18270 ha-1) over sole sesame crop (344 kg ha-1 & Rs. 6156 ha-1) followed by mungbean in 4:2 (490 kg ha-1 with net return of Rs. 15164 ha-1) being at par with urdbean in 3:1 (473 kg ha-1 with net return of Rs. 14078 ha-1). It was concluded that mungbean can be grown as a beneficial intercrop in sesame under dryland conditions of Rajasthan.


Author(s):  
Ch. Pragathi Kumari ◽  
M. Goverdhan ◽  
G. Kiran Reddy ◽  
Knight Nthebere ◽  
S. H. K. Sharma ◽  
...  

The present study was undertaken in the ongoing long-term experiment initiated during 2017 at experimental farm, College of Agriculture, Rajendranagar, Hyderabad. Soil samples collected from a depth of 0–15 cm was analysed for soil fertility parameters namely: available N, P and K. The results indicated that the different cropping systems had positive influence on improving the nutrient status (i.e., available N, P and K) significantly over the initial soil values (N: 112.20, P: 23.40 and K: 170.30 kg ha-1, respectively). These ten cropping systems were grouped in to five categories viz., pre-dominant cropping systems of the zone, ecological cropping systems, household nutritional security giving cropping systems, fodder security giving cropping systems and cropping systems involving high value crops. So that from each category, best cropping system can be identified and can be suggested to different integrated farming systems models. The maximum (221.60 and 221.57 kg ha-1) soil available nitrogen was obtained in Pigeon pea + Greengram (1:3) – Sesame after harvest of kharif and rabi, available phosphorus builds up was profound in Fodder maize – Lucerne (48.27 kg ha-1) and available K (207.63 kg ha-1) was higher in Rice –Maize cropping system after harvest. Fodder crops recorded significantly higher NPK uptake over other cropping systems.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 756c-756
Author(s):  
D.R. Earhart ◽  
V.A. Haby ◽  
M.L. Baker ◽  
A.T. Leonard

Primary environmental concerns regarding application of poultry litter (PL) for crop production are nitrate leaching into ground water and increased levels of P in the soil that can erode into surface water. This study was initiated to investigate use of warm- and cool-season annual forage crops to remove excess nutrients supplied by PL in rotational-cropping systems on a Bowie fine sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults). PL was applied at one (1×) or two (2×) times the recommended rate in the spring, fall, or spring and fall. Rates were based on N requirement of the crop and percent N in the litter. Comparisons were made to fertilizer blends (FB) and control treatments with no PL or FB. After 3 years of treatments, NO3-N increased at the 122-cm depth by 30 and 50 mg·kg–1 from the 1× and 2× rate, respectively. The greatest accumulation was from FB (72 mg·kg–1). With PL applied in spring only, spring vegetables followed by a fall cover showed a significant reduction in NO3-N leaching and accumulation. Regardless of cropping system, rate, or time of application, P concentration increased by 40 mg·kg–1 in the surface 15 cm of soil when compared to FB. If applied in an environmentally sound manner, PL will be less of a threat to pollution of ground water than similar rates of FB. Applying PL rates sufficient to meet crop needs for N results in P accumulation that can lead to nonpoint source pollution of surface waters.


Author(s):  
Sherif Ibrahim Abdel-Wahab ◽  
Eman Ibrahim Abdel-Wahab

Background: Broomrape (Orobanche crenata Forsk.) is a major threat to faba bean and an important danger parasite. An intercropping is a necessity to curb the spread and progress of the parasite before it leads to much more economic losses. The current study was aimed to evaluate intercropping of fenugreek with faba bean under two plant densities of both crops on broomrape incidence to increase faba bean yield, land usage and economic return in heavy soil infestation of broomrape.Methods: This study was carried out at Giza Agricultural Research Station (Lat. 30°002 303 N, Long. 31°122 433 E, 26 m a.s.l), Agricultural Research Center, Giza, Egypt. During the winter season of 2017/2018 and 2018/2019 seasons, sixteen treatments were the combinations between two ridge widths (60 “narrow” and 120 cm “wide”) and six cropping systems (50% faba bean + 50% fenugreek, 100% faba bean + 50% fenugreek, 50% faba bean + 100% fenugreek, 100% faba bean + 100% fenugreek, 50% sole faba bean and 100% sole faba bean), as well as sole plantings of fenugreek under heavy soil infestation of broomrape. A split-plot design with three replicates was used. Ridge widths were assigned in the main plots and cropping systems were arranged in sub plots. Result: Growing faba bean plants in wide ridges had physical barriers with stamping of the vascular system against the parasite. 50% faba bean + 100% fenugreek had higher soil total phenols in faba bean rhizosphere than the others. Growing 50% faba bean + 100% fenugreek in wide ridges had lower number of spikes per m2 and spikes dry weight per m2, meanwhile, growing 100% faba bean + 100% fenugreek in wide ridges had higher seed yields of both crops per ha, land usage and economic return. Growing two rows of faba bean (100% of sole cropping) in both sides of wide ridge (120 cm width) with four rows of fenugreek (100% of sole cropping) in middle of the ridge could be an integrated control strategy to increase faba bean productivity, land usage and economic return under heavily soil infested of broomrape.


Sign in / Sign up

Export Citation Format

Share Document