Martian crustal magnetic fields: influences on the ionosphere

Author(s):  
David Andrews ◽  
Laila Andersson ◽  
Robert Ergun ◽  
Anders Eriksson ◽  
Marcin Pilinski ◽  
...  

<p>Recent Mars Express and MAVEN observations have shown the extent to <br>which Mars's crustal fields, though weak in absolute magnitude, <br>nevertheless exert significant control over the structure of the ionosphere <br>over a range of altitudes. However, quantifying this control remains <br>challenging given the generally dynamic nature of the Mars solar wind <br>interaction, and the therefore naturally varying densities and temperatures <br>of the upper ionosphere in particular. In this study we examine MAVEN <br>Langmuir Probe and Waves data, and show for the first time a very clear <br>correspondence between the structure of the crustal fields and both the <br>measured electron temperatures and densities. Electron temperatures are <br>shown to be systematically lower in regions of strong crustal fields over a <br>wide altitude range. We speculate on the origins of this deviation.</p>

2020 ◽  
Author(s):  
Philippe Garnier ◽  
Christian Jacquey ◽  
Christian Mazelle ◽  
Xiaohua Fang ◽  
Jacob Gruesbeck ◽  
...  

<p>The Martian interaction with the solar wind is unique due to the influence of remanent crustal magnetic fields. The recent studies by the Mars Express and Mars Atmosphere and Volatile Evolution missions underline the strong and complex influence of the crustal magnetic fields on the Martian environment and its interaction with the solar wind. Among them is the influence on the dynamic plasma boundaries that shape this interaction and on the bow shock in particular.</p> <p>Compared to other drivers of the shock location (e.g. solar dynamic pressure, extreme ultraviolet fluxes), the influence of crustal magnetic fields are less understood, with essentially differences observed between the southern and northern hemispheres attributed to the crustal fields. In this presentation we analyze in detail the influence of the crustal fields on the Martian shock location by combining for the first time datasets from two different spacecraft (MAVEN/MEX). An application of machine learning techniques will also be used to increase the list of MAVEN shocks published to date. We show in particular the importance for analyzing biases due to multiple parameters of influence through a partial correlation approach. We also compare the impact of crustal fields with the other parameters of influence, and show that the main drivers of the shock location are by order of importance extreme ultraviolet fluxes and magnetosonic Mach number, crustal fields and then solar wind dynamic pressure.</p>


Author(s):  
Chuanfei Dong ◽  
Liang Wang ◽  
Ammar Hakim ◽  
Amitava Bhattacharjee ◽  
James Slavin ◽  
...  

<p>For the first time, we explore the tightly coupled interior‐magnetosphere system of Mercury by employing a three‐dimensional ten‐moment multifluid model. This novel fluid model incorporates the nonideal effects including the Hall effect, electron inertia, and tensorial pressures that are critical for collisionless magnetic reconnection; therefore, it is particularly well suited for investigating collisionless magnetic reconnection in Mercury's magnetotail and at the planet's magnetopause. The model is able to reproduce the observed magnetic field vectors, field‐aligned currents, and cross‐tail current sheet asymmetry (beyond magnetohydrodynamic approach), and the simulation results are in good agreement with spacecraft observations. We also study the magnetospheric response of Mercury to an extreme event with an enhanced solar wind dynamic pressure, which demonstrates the significance of induction effects resulting from the electromagnetically coupled interior. More interestingly, plasmoids (or flux ropes) are formed in Mercury's magnetotail during the event, indicating the highly dynamic nature of Mercury's magnetosphere. This novel ten‐moment multifluid model represents a crucial step toward establishing a revolutionary approach that enables the investigation of Mercury's tightly coupled interior‐magnetosphere system beyond the traditional fluid model and has the potential to enhance the science returns of both the MESSENGER mission and the BepiColombo mission.</p>


2011 ◽  
Vol 29 (10) ◽  
pp. 1793-1807 ◽  
Author(s):  
F. Plaschke ◽  
K.-H. Glassmeier

Abstract. The radial, oscillatory motion of the Earth's magnetopause has been found to occur predominantly with some distinct, sometimes called "magic" frequencies, which have been attributed to magnetospheric wave guide modes, typical solar wind variations or, more recently, surface waves on the magnetopause standing between the northern and southern ionospheres. In this paper we present for the first time a derivation of these surface waves, denominated as Kruskal-Schwarzschild-modes (KS-modes), in the approximation of the ideal, single-fluid magnetohydrodynamic theory for incompressible plasmas. The calculations are performed in the simplified geometry of the box magnetosphere with the magnetopause being a plane between two plasma regimes of homogeneous conditions. The reflection of the KS-modes at the ionospheres is being discussed. Under the given assumptions and realistic conditions the validity of the calculations is shown to be limited to cases of parallel or anti-parallel background magnetic fields on both sides of the magnetopause, respectively. For these cases a detailed discussion of the mode structure is presented. The magnetopause when affected by a KS-mode is found to resemble a membrane under tension with respect to its motion; the ionospheres act as supporting points of the membrane and the KS-modes correspond in this picture to their eigenmodes of oscillation. Localized pressure enhancements in the magnetosheath are discussed as possible excitation mechanism for the KS-modes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuela Temmer

AbstractThe Sun, as an active star, is the driver of energetic phenomena that structure interplanetary space and affect planetary atmospheres. The effects of Space Weather on Earth and the solar system is of increasing importance as human spaceflight is preparing for lunar and Mars missions. This review is focusing on the solar perspective of the Space Weather relevant phenomena, coronal mass ejections (CMEs), flares, solar energetic particles (SEPs), and solar wind stream interaction regions (SIR). With the advent of the STEREO mission (launched in 2006), literally, new perspectives were provided that enabled for the first time to study coronal structures and the evolution of activity phenomena in three dimensions. New imaging capabilities, covering the entire Sun-Earth distance range, allowed to seamlessly connect CMEs and their interplanetary counterparts measured in-situ (so called ICMEs). This vastly increased our knowledge and understanding of the dynamics of interplanetary space due to solar activity and fostered the development of Space Weather forecasting models. Moreover, we are facing challenging times gathering new data from two extraordinary missions, NASA’s Parker Solar Probe (launched in 2018) and ESA’s Solar Orbiter (launched in 2020), that will in the near future provide more detailed insight into the solar wind evolution and image CMEs from view points never approached before. The current review builds upon the Living Reviews article by Schwenn from 2006, updating on the Space Weather relevant CME-flare-SEP phenomena from the solar perspective, as observed from multiple viewpoints and their concomitant solar surface signatures.


2017 ◽  
Vol 44 (21) ◽  
Author(s):  
Robin Ramstad ◽  
Stas Barabash ◽  
Yoshifumi Futaana ◽  
Masatoshi Yamauchi ◽  
Hans Nilsson ◽  
...  

2012 ◽  
Vol 12 (15) ◽  
pp. 7073-7085 ◽  
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
G. Nikulin ◽  
M. L. Santee ◽  
...  

Abstract. We present a detailed discussion of the chemical and dynamical processes in the Arctic winters 1996/1997 and 2010/2011 with high resolution chemical transport model (CTM) simulations and space-based observations. In the Arctic winter 2010/2011, the lower stratospheric minimum temperatures were below 195 K for a record period of time, from December to mid-April, and a strong and stable vortex was present during that period. Simulations with the Mimosa-Chim CTM show that the chemical ozone loss started in early January and progressed slowly to 1 ppmv (parts per million by volume) by late February. The loss intensified by early March and reached a record maximum of ~2.4 ppmv in the late March–early April period over a broad altitude range of 450–550 K. This coincides with elevated ozone loss rates of 2–4 ppbv sh−1 (parts per billion by volume/sunlit hour) and a contribution of about 30–55% and 30–35% from the ClO-ClO and ClO-BrO cycles, respectively, in late February and March. In addition, a contribution of 30–50% from the HOx cycle is also estimated in April. We also estimate a loss of about 0.7–1.2 ppmv contributed (75%) by the NOx cycle at 550–700 K. The ozone loss estimated in the partial column range of 350–550 K exhibits a record value of ~148 DU (Dobson Unit). This is the largest ozone loss ever estimated in the Arctic and is consistent with the remarkable chlorine activation and strong denitrification (40–50%) during the winter, as the modeled ClO shows ~1.8 ppbv in early January and ~1 ppbv in March at 450–550 K. These model results are in excellent agreement with those found from the Aura Microwave Limb Sounder observations. Our analyses also show that the ozone loss in 2010/2011 is close to that found in some Antarctic winters, for the first time in the observed history. Though the winter 1996/1997 was also very cold in March–April, the temperatures were higher in December–February, and, therefore, chlorine activation was moderate and ozone loss was average with about 1.2 ppmv at 475–550 K or 42 DU at 350–550 K, as diagnosed from the model simulations and measurements.


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document