Open areas in patchy ecosystems: key spaces for vegetation survival.

Author(s):  
Borja Rodríguez Lozano ◽  
Emilio Rodriguez-Caballero ◽  
Yolanda Cantón

<p>Drylands are one of the largest biomes over the Earth, covering around 40% of land surface. These are water limited ecosystems where vegetation occupies the most favourable positions over the landscape. Less favourable areas are frequently covered by other biotic and abiotic components such as biological soil crusts, bare soil, or stones. During most rainfall events, runoff is generated in open areas (runoff sources) and redistributed through vegetation patches (runoff sinks), therefore increasing water and nutrient availability for plants. Water redistribution feedbacks determine vegetation coverage and productivity, modulate changes in its spatial distribution, and could ameliorate the predicted negative effects of climate change over these ecosystems.</p><p>The principal aim of this study was to quantify the impact of water redistribution processes on vegetation performance, and to evaluate how this effect varies in response to aridity. To achieve it, we analysed the relationships between runoff redistribution from open areas and vegetation productivity, by combining satellite information on vegetation state and topography. More precisely, we calculated Normalized Difference Vegetation Index (NDVI) dynamics during three hydrological years in 17 study sites along an aridity gradient in the SE of the Iberian Peninsula using SENTINEL 2 images. Then we used a DEM and a high spatial resolution vegetation map to derive a water redistribution index that simulate source-sinks interactions between vegetation and open areas. Finally, we analyse the relationship between, potential water redistribution and vegetation dynamics and how it varies along the aridity gradient.</p><p>We found a non-linear relationship between potential water redistribution and vegetation productivity. Overall, vegetation NDVI increases as potential water redistribution did, which demonstrated the importance of water redistribution processes on drylands vegetation performance. However, vegetation capacity to retain runoff water is limited and there is a clear threshold above which increased potential water redistribution does not promote vegetation productivity. Thresholds are caused by the limit capacity of vegetation to infiltrate run off when preferential flows are forming, increasing ecosystem connectivity, and involving local water losses for vegetation.  Therefore, an increase in open areas between vegetation patches could have a positive effect over vegetation through hydrological connectivity but until to a certain point in which global connectivity supposed water losses for plants. This process could have important effects under climate change, by controlling the resistance and resilience of vegetation in drylands ecosystems.</p><p>Acknowledgements. This research was supported by the FPU predoctoral fellowship from the Educational, Culture and Sports Ministry of Spain (FPU17/01886) REBIOARID (RTI2018-101921-B-I00) projects, funded by the FEDER/Science and Innovation Ministry-National Research Agency, and the RH2O-ARID (P18-RT-5130) funded by Junta de Andalucía and the European Union for Regional Development.</p>

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1551
Author(s):  
Jiaqi Zhang ◽  
Xiangjin Shen ◽  
Yanji Wang ◽  
Ming Jiang ◽  
Xianguo Lu

The area and vegetation coverage of forests in Changbai Mountain of China have changed significantly during the past decades. Understanding the effects of forests and forest coverage change on regional climate is important for predicting climate change in Changbai Mountain. Based on the satellite-derived land surface temperature (LST), albedo, evapotranspiration, leaf area index, and land-use data, this study analyzed the influences of forests and forest coverage changes on summer LST in Changbai Mountain. Results showed that the area and vegetation coverage of forests increased in Changbai Mountain from 2003 to 2017. Compared with open land, forests could decrease the summer daytime LST (LSTD) and nighttime LST (LSTN) by 1.10 °C and 0.07 °C, respectively. The increase in forest coverage could decrease the summer LSTD and LSTN by 0.66 °C and 0.04 °C, respectively. The forests and increasing forest coverage had cooling effects on summer temperature, mainly by decreasing daytime temperature in Changbai Mountain. The daytime cooling effect is mainly related to the increased latent heat flux caused by increasing evapotranspiration. Our results suggest that the effects of forest coverage change on climate should be considered in climate models for accurately simulating regional climate change in Changbai Mountain of China.


2016 ◽  
Vol 31 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Angela B. Kuriata-Potasznik ◽  
Sławomir Szymczyk

AbstractIt is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical) water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned.


2021 ◽  
Author(s):  
Thedini Asali Peiris ◽  
Petra Döll

<p>Unlike global climate models, hydrological models cannot simulate the feedbacks among atmospheric processes, vegetation, water, and energy exchange at the land surface. This severely limits their ability to quantify the impact of climate change and the concurrent increase of atmospheric CO<sub>2</sub> concentrations on evapotranspiration and thus runoff. Hydrological models generally calculate actual evapotranspiration as a fraction of potential evapotranspiration (PET), which is computed as a function of temperature and net radiation and sometimes of humidity and wind speed. Almost no hydrological model takes into account that PET changes because the vegetation responds to changing CO<sub>2</sub> and climate. This active vegetation response consists of three components. With higher CO<sub>2</sub> concentrations, 1) plant stomata close, reducing transpiration (physiological effect) and 2) plants may grow better, with more leaves, increasing transpiration (structural effect), while 3) climatic changes lead to changes in plants growth and even biome shifts, changing evapotranspiration. Global climate models, which include dynamic vegetation models, simulate all these processes, albeit with a high uncertainty, and take into account the feedbacks to the atmosphere.</p><p>Milly and Dunne (2016) (MD) found that in the case of RCP8.5 the change of PET (computed using the Penman-Monteith equation) between 1981- 2000 and 2081-2100 is much higher than the change of non-water-stressed evapotranspiration (NWSET) computed by an ensemble of global climate models. This overestimation is partially due to the neglect of active vegetation response and partially due to the neglected feedbacks between the atmosphere and the land surface.</p><p>The objective of this paper is to present a simple approach for hydrological models that enables them to mimic the effect of active vegetation on potential evapotranspiration under climate change, thus improving computation of freshwater-related climate change hazards by hydrological models. MD proposed an alternative approach to estimate changes in PET for impact studies that is only a function of the changes in energy and not of temperature and achieves a good fit to the ensemble mean change of evapotranspiration computed by the ensemble of global climate models in months and grid cells without water stress. We developed an implementation of the MD idea for hydrological models using the Priestley-Taylor equation (PET-PT) to estimate PET as a function of net radiation and temperature. With PET-PT, an increasing temperature trend leads to strong increases in PET. Our proposed methodology (PET-MD) helps to remove this effect, retaining the impact of temperature on PET but not on long-term PET change.</p><p>We implemented the PET-MD approach in the global hydrological model WaterGAP2.2d. and computed daily time series of PET between 1981 and 2099 using bias-adjusted climate data of four global climate models for RCP 8.5. We evaluated, computed PET-PT and PET-MD at the grid cell level and globally, comparing also to the results of the Milly-Dunne study. The global analysis suggests that the application of PET-MD reduces the PET change until the end of this century from 3.341 mm/day according to PET-PT to 3.087 mm/day (ensemble mean over the four global climate models).</p><p>Milly, P.C.D., Dunne K.A. (2016). DOI:10.1038/nclimate3046.</p>


2020 ◽  
Author(s):  
Elcin Tan

<p>A debate on the probable Istanbul Isthmus Project that may have catastrophic impacts on our ecosystem has been recently accelerated in public, due to the fact that the approved environmental impact assessment (EIA) report of the hypothetical Istanbul Isthmus (HII) Project has recently been announced. The EIA report indicates that the assessment covers only the current conditions and the conditions that may arise during the construction of the HII. Unfortunately, The EIA report did not evaluate the climate change impact on either the Istanbul Area or Mediterranean Region after the inclusion of the HII, only the current conditions were evaluated. Therefore, the aim of this study is to investigate the impact of HII on the climate of the Mediterranean Region. The climate version of the WRF Model is utilized with 9 km resolution for the Region 12: Mediterranean (CORDEX) for the historical conditions and RCP8.5 scenarios of available climate model results from CMIP5 and CMIP6 projects. Land surface and land use maps are prepared by following the EIA report if the necessary information is included, otherwise, the current conditions are applied. The atmospheric conditions were not coupled to an Ocean Model, only the Sea Surface Temperature (SST) values of the Ocean Models are coupled to the WRF model during both historical and future simulations. The model results are evaluated in terms of temperature, precipitation, and sea-level changes. Consequently, the results indicate that the HII may decrease the resilience of the Mediterranean Region to Climate Change.</p>


2007 ◽  
Vol 4 (4) ◽  
pp. 2385-2405 ◽  
Author(s):  
R. Harrison ◽  
C. Jones

Abstract. Natural ecosystems respond to, and may affect climate change through uptake and storage of atmospheric CO2. Here we use the land-surface and carbon cycle model JULES to simulate the contemporary European carbon balance and its sensitivity to rising CO2 and changes in climate. We find that the impact of climate change is to decrease the ability of Europe to store carbon by about 175 TgC yr−1. In contrast, the effect of rising atmospheric CO2 has been to stimulate increased uptake and storage. The CO2 effect is currently dominant leading to a net increase of around 150 TgC yr−1. Our simulations do not at present include other important factors such as land use and management, the effects of forest age classes and nitrogen deposition. There seems to be an emerging consensus that changes in climate will weaken the European land-surface's ability to take up and store carbon. It is likely that this effect is happening at the present and will continue even more strongly in the future as climate continues to change. Although CO2 enhanced growth currently exceeds the climate effect, this may not continue indefinitely. Understanding this balance and its implications for mitigation policies is becoming increasingly important.


2017 ◽  
Author(s):  
Gonzalo Sapriza-Azuri ◽  
Pablo Gamazo ◽  
Saman Razavi ◽  
Howard S. Wheater

Abstract. Arctic and sub-arctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, the carbon cycle, and hydrology in Earth system models. This study focuses on Land Surface Models (LSMs) that represent the lower boundary condition of General Circulation Models (GCMs) and Regional Climate Models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 meters, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire – Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty, and (2) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate that the adequate depth of soil profile in an LSM varies for warmer and colder conditions and is sensitive to model parameters and the uncertainty around them. In general, however, we show that a minimum of 20 meters of soil profile is essential to adequately represent the temperature dynamics. Our results also indicate the significance of model initialization in permafrost regions and our proposed spin-up method requires running the LSM over more than 300 years of reconstructed climate time series.


2014 ◽  
Vol 7 (5) ◽  
pp. 6773-6809
Author(s):  
T. Osborne ◽  
J. Gornall ◽  
J. Hooker ◽  
K. Williams ◽  
A. Wiltshire ◽  
...  

Abstract. Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.


2019 ◽  
Vol 11 (9) ◽  
pp. 2618 ◽  
Author(s):  
Junjie Yan ◽  
Guangpeng Zhang ◽  
Xiaoya Deng ◽  
Hongbo Ling ◽  
Hailiang Xu ◽  
...  

In mountain-basin systems in the arid region, grasslands are sensitive to the impacts of climate change and human activities. In this study, we aimed to resolve two key scientific issues: (1) distinguish and explain the laws of grassland ecosystem deterioration in a mountain-basin system and identify the key factors related; and (2) evaluate whether damaged grasslands ecosystem have the potential for natural revegetation. Hence, by combining spatial analysis with statistical methods, we studied the trends of the deterioration of the grassland ecosystem and its spatial characteristics in Kulusitai, a mountain-basin system in the arid region of Northwest China. According to our results, vegetation coverage and productivity exhibited significant decreasing trends, while the temperature vegetation drought index (TVDI) exhibited a significant increasing trend. Drainage of groundwater, because of increase in irrigation for the expanded irrigated area around Kulusitai, and climate warming were the critical triggers that leaded to the soil drought. Soil drought and overgrazing, resulting from the impact of human activities, were the main factors responsible for the deterioration of the grassland ecosystems. However, limiting the number of livestock to a reasonable scale and reducing the irrigated area may help to increase the soil moisture, thus promoting the germination of soil seed banks and facilitating the normal growth of grassland vegetation. Furthermore, based on analysis of the phenology of the grassland vegetation, the reasonable period for harvesting and storage is from July 29 to August 5. The results of this study provide a scientific basis and practical guide for restoring mountain-basin grassland systems in arid regions.


2021 ◽  
Author(s):  
Franco Catalano ◽  
Andrea Alessandri ◽  
Wilhelm May ◽  
Thomas Reerink

<p align="justify"><span>The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) aims at diagnosing systematic biases in the land models of CMIP6 Earth System Models and assessing the role of land-atmosphere feedbacks on climate change. Two components of experiments have been designed: the first is devoted to the assessment of the systematic land biases in offline mode (LMIP) while the second component is dedicated to the analysis of the land feedbacks in coupled mode (LFMIP). Here we focus on the LFMIP experiments. In the LFMIP protocol (van den Hurk et al. 2016), which builds upon the GLACE-CMIP configuration, two sets of climate-sensitivity projections have been carried out in amip mode: in the first set (amip-lfmip-pdLC) the land feedbacks to climate change have been disabled by prescribing the soil-moisture states from a climatology derived from “present climate conditions” (1980-2014) while in the second set (amip-lfmip-rmLC) 30-year running mean of land-surface state from the corresponding ScenarioMIP experiment (O’Neill et al., 2016) is prescribed. The two sensitivity simulations span the period 1980-2100 with sea surface temperature and sea-ice conditions prescribed from the first member of historical and ScenarioMIP experiments. Two different scenarios are considered: SSP1-2.6 (f1) and SSP5-8.5 (f2).</span></p><p align="justify"><span>In this analysis, we focus on the differences between amip-lfmip-rmLC and amip-lfmip-pdLC at the end of the 21st Century (2071–2100) in order to isolate the impact of the soil moisture changes on surface climate change. The (2071-2100) minus (1985-2014) temperature change is positive everywhere over land and the climate change signal of precipitation displays a clear intensification of the hydrological cycle in the Northern Hemisphere. Warming and hydrological cycle intensification are larger in SSP5-8.5 scenario. Results show large differences in the feedbacks between wet, transition and semi-arid climates. In particular, over the regions with negative soil moisture change, the 2m-temperature increases significantly while the cooling signal is not significant over all the regions getting wetter. In agreement with Catalano et al. (2016), the larger effects on precipitation due to soil moisture forcing occur mostly over transition zones between dry and wet climates, where evaporation is highly sensitive to soil moisture. The sensitivity of both 2m-temperature and precipitation to soil moisture change is much stronger in the SSP5-8.5 scenario.</span></p>


2018 ◽  
Vol 10 (10) ◽  
pp. 1524 ◽  
Author(s):  
Reyadh Albarakat ◽  
Venkat Lakshmi ◽  
Compton Tucker

The Iraqi Marshes in Southern Iraq are considered one of the most important wetlands in the world. From 1982 to the present, their area has varied between 10,500 km2 and 20,000 km2. The marshes support a variety of plants, such as reeds and papyrus, and are home to many species of birds. These marshes are Al-Hammar, Central or Al-Amarah, and Al-Huwaiza. Freshwater supplies to the marshes come from the Tigris and Euphrates rivers in Iraq and from the Karkha River from Iran. For this analysis, we used the Land Long-Term Data Record Version 5 (LTDR V5) Normalized Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) sensor dataset. This dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution to monitor the spatial and temporal variability of vegetation along with other hydrological variables such as land surface temperature, precipitation, and evapotranspiration. In our analysis, we considered three time periods: 1982–1992; 1993–2003; and 2004–2017 due to anthropogenic activities and climate changes. Furthermore, we examined the relationships between various water cycle variables through the investigation of vegetation and water coverage changes, and studied the impacts of climate change and anthropogenic activities on the Iraqi Marshes and considered additional ground observations along with the satellite datasets. Statistical analyses over the last 36 years show significant deterioration in the vegetation: 68.78%, 98.73, and 83.71% of the green biomass has declined for Al-Hammar, The Central marshes, and Al-Huwaiza, respectively. The AVHRR and Landsat images illustrate a decrease in water and vegetation coverage, which in turn has led to an increase in barren lands. Unfortunately, statistical analyses show that marshland degradation is mainly induced by human actions. The shrinkage in water supplies taken by Iraq’s local neighbors (i.e., Turkey, Syria, and Iran) has had a sharp impact on water levels. The annual discharge of the Tigris declined from ~2500–3000 m3/s to ~500 m3/s, and the annual discharge of the Euphrates River declined from ~1500 m3/s to less than 500 m3/s.


Sign in / Sign up

Export Citation Format

Share Document