Land-use change effects on biodiversity through mechanistic simulations: A case study with South-Asian mammals

Author(s):  
Andre P. Silva ◽  
Filip Thorn ◽  
Damaris Zurell ◽  
Juliano Cabral

<p>Land-use change remains the main driver of biodiversity loss, and fragmentation and habitat loss are expected to lead to further population declines and species losses . We apply a recently developed R package for a spatially-explicit mechanistic simulation model (RangeShiftR), which incorporates habitat suitability, demographic as well as dispersal processes to understand temporal effects of land-use change (Land-use harmonization scenarios for the 1900-2100 period) on abundance and richness of mammalian species in South-Asia. We then compare land-use scenarios with and without protected areas to understand if current spatial conservation strategies are able to sustain viable populations independently of the land-use scenarios followed. Our approach is innovative in assessing how land-use scenarios can influence animal populations through underlying ecological processes.</p>

2021 ◽  
Vol 13 (6) ◽  
pp. 3473
Author(s):  
Yong Lai ◽  
Guangqing Huang ◽  
Shengzhong Chen ◽  
Shaotao Lin ◽  
Wenjun Lin ◽  
...  

Anthropogenic land-use change is one of the main drivers of global environmental change. China has been on a fast track of land-use change since the Reform and Opening-up policy in 1978. In view of the situation, this study aims to optimize land use and provide a way to effectively coordinate the development and ecological protection in China. We took East Guangdong (EGD), an underdeveloped but populous region, as a case study. We used land-use changes indexes to demonstrate the land-use dynamics in EGD from 2000 to 2020, then identified the hot spots for fast-growing areas of built-up land and simulated land use in 2030 using the future land-use simulation (FLUS) model. The results indicated that the cropland and the built-up land changed in a large proportion during the study period. Then we established the ecological security pattern (ESP) according to the minimal cumulative resistance model (MCRM) based on the natural and socioeconomic factors. Corridors, buffer zones, and the key nodes were extracted by the MCRM to maintain landscape connectivity and key ecological processes of the study area. Moreover, the study showed the way to identify the conflict zones between future built-up land expansion with the corridors and buffer zones, which will be critical areas of consideration for future land-use management. Finally, some relevant policy recommendations are proposed based on the research result.


2021 ◽  
Author(s):  
Dario Ruggiu ◽  
Salvatore Urru ◽  
Roberto Deidda ◽  
Francesco Viola

<p>The assessment of climate change and land use modifications effects on hydrological cycle is challenging. We propose an approach based on Budyko theory to investigate the relative importance of natural and anthropogenic drivers on water resources availability. As an example of application, the proposed approach is implemented in the island of Sardinia (Italy), which is affected by important processes of both climate and land use modifications. In details, the proposed methodology assumes the Fu’s equation to describe the mechanisms of water partitioning at regional scale and uses the probability distributions of annual runoff (Q) in a closed form. The latter is parametrized by considering simple long-term climatic info (namely first orders statistics of annual rainfall and potential evapotranspiration) and land use properties of basins.</p><p>In order to investigate the possible near future water availability of Sardinia, several climate and land use scenarios have been considered, referring to 2006-2050 and 2051-2100 periods. Climate scenarios have been generated considering fourteen bias corrected outputs of climatic models from EUROCORDEX’s project (RCP 8.5), while three land use scenarios have been created following the last century tendencies.</p><p>Results show that the distribution of annual runoff in Sardinia could be significantly affected by both climate and land use change. The near future distribution of Q generally displayed a decrease in mean and variance compared to the baseline.   </p><p>The reduction of  Q is more critical moving from 2006-2050 to 2051-2100 period, according with climatic trends, namely due to the reduction of annual rainfall and the increase of potential evapotranspiration. The effect of LU change on Q distribution is weaker than the climatic one, but not negligible.</p>


2018 ◽  
Vol 10 (8) ◽  
pp. 2764 ◽  
Author(s):  
Abhishek Chaudhary ◽  
Arne Mooers

Efficient forward-looking mitigation measures are needed to halt the global biodiversity decline. These require spatially explicit scenarios of expected changes in multiple indicators of biodiversity under future socio-economic and environmental conditions. Here, we link six future (2050 and 2100) global gridded maps (0.25° × 0.25° resolution) available from the land use harmonization (LUH) database, representing alternative concentration pathways (RCP) and shared socio-economic pathways (SSPs), with the countryside species–area relationship model to project the future land use change driven rates of species extinctions and phylogenetic diversity loss (in million years) for mammals, birds, and amphibians in each of the 804 terrestrial ecoregions and 176 countries and compare them with the current (1900–2015) and past (850–1900) rates of biodiversity loss. Future land-use changes are projected to commit an additional 209–818 endemic species and 1190–4402 million years of evolutionary history to extinction by 2100 depending upon the scenario. These estimates are driven by land use change only and would likely be higher once the direct effects of climate change on species are included. Among the three taxa, highest diversity loss is projected for amphibians. We found that the most aggressive climate mitigation scenario (RCP2.6 SSP-1), representing a world shifting towards a radically more sustainable path, including increasing crop yields, reduced meat production, and reduced tropical deforestation coupled with high trade, projects the lowest land use change driven global biodiversity loss. The results show that hotspots of future biodiversity loss differ depending upon the scenario, taxon, and metric considered. Future extinctions could potentially be reduced if habitat preservation is incorporated into national development plans, especially for biodiverse, low-income countries such as Indonesia, Madagascar, Tanzania, Philippines, and The Democratic Republic of Congo that are otherwise projected to suffer a high number of land use change driven extinctions under all scenarios.


2018 ◽  
Vol 30 ◽  
pp. 1-39 ◽  
Author(s):  
Claudia Gutierrez-Arellano ◽  
Mark Mulligan

Land use and cover change (LUCC) is the main cause of natural ecosystem degradation and biodiversity loss and can cause a decrease in ecosystem service provision. Animal populations are providers of some key regulation services: pollination, pest and disease control and seed dispersal, the so-called faunal ecosystem services (FES). Here we aim to give an overview on the current and future status of regulation FES in response to change from original habitat to agricultural land globally. FES are much more tightly linked to wildlife populations and biodiversity than are most ecosystem services, whose determinants are largely climatic and related to vegetation structure. Degradation of ecosystems by land use change thus has much more potential to affect FES. In this scoping review, we summarise the main findings showing the importance of animal populations as FES providers and as a source of ecosystem disservices; underlying causes of agriculturalisation impacts on FES and the potential condition of FES under future LUCC in relation to the expected demand for FES globally. Overall, studies support a positive relationship between FES provision and animal species richness and abundance. Agriculturalisation has negative effects on FES providers due to landscape homogenisation, habitat fragmentation and loss, microclimatic changes and development of population imbalance, causing species and population losses of key fauna, reducing services whilst enhancing disservices. Since evidence suggests an increase in FES demand worldwide is required to support increased farming, it is imperative to improve the understanding of agriculturalisation on FES supply and distribution. Spatial conservation prioritisation must factor in faunal ecosystem functions as the most biodiversity-relevant of all ecosystem services and that which most closely links sites of service provision of conservation value with nearby sites of service use to provide ecosystem services of agricultural and economic value.


Author(s):  
P. K. Joshi ◽  
Neena Priyanka

The dynamics of land use/land cover (LU/LC) is a manifestation of the cyclic correlation among the kind and magnitude of causes, impacts, responses and resulting ecological processes of the ecosystem. Thus, the holistic understanding of the complex mechanisms that control LU/LC requires synergetic adoption of measurement approaches, addressing issues, and identifying drivers of change and state of art technologies for mitigation measures. As the spatio-temporal heterogeneity of the LU/LC increases, its impact on biodiversity becomes even more difficult to anticipate. Thus, in order to understand the spatio-temporal dynamics of change in landscape and its relationship to biodiversity, it is necessary to reliably identify and quantify the indicators of change. In addition, it is also important to have better understanding of the technologies and techniques that serve as complimentary tool for land mitigation and conservation planning. Against this background, the chapter aims to synthesize LU/LC studies worldwide and their impacts on biodiversity. This chapter explores identification and analysis of key natural, socio-economic and regulatory drivers for LU/LC. Finally, it attempts to collate some LU/LC studies involving usage of geospatial tools, such as satellite remote sensing, Geographic Information System (GIS), Global Positioning System (GPS), and integrative tools, besides conventional approaches that could assist decision makers, land managers, stakeholders and researchers in better management and formulation of conservation strategies based on scientific grounds.


2020 ◽  
Vol 29 (13) ◽  
pp. 3669-3688
Author(s):  
Asunción Semper-Pascual ◽  
Julieta Decarre ◽  
Matthias Baumann ◽  
Micaela Camino ◽  
Yamil Di Blanco ◽  
...  

Abstract Land-use change is a global threat to biodiversity, but how land-use change affects species beyond the direct effect of habitat loss remains poorly understood. We developed an approach to isolate and map the direct and indirect effects of agricultural expansion on species of conservation concern, using the threatened giant anteater (Myrmecophaga tridactyla) in the Gran Chaco as an example. We reconstructed anteater occupancy change between 1985 and 2015 by fitting single-season occupancy models with contemporary camera-trap data and backcasting the models to 1985 and 2000 land-cover/use maps. Based on this, we compared the area of forest loss (direct effect of agricultural expansion) with the area where forests remained but occupancy still declined (indirect effect of agricultural expansion). Anteater occupancy decreased substantially since 1985, particularly after 2000 when agriculture expanded rapidly. Between 1985 and 2015, ~ 64,000 km2 of forest disappeared, yet occupancy declined across a larger area (~ 102,000 km2), extending far into seemingly untransformed habitat. This suggests that widespread sink habitat has emerged due to agricultural land-use change, and that species may lose their habitat through direct and indirect effects of agricultural expansion, highlighting the urgent need for broad-scale conservation planning in the Chaco. Appropriate management responses could proactively protect more habitat where populations are stable, and restore habitat or address causes of mortality in areas where declines occur. Our work also highlights how occupancy modelling combined with remote sensing can help to detect the direct and indirect effects of agricultural expansion, providing guidance for spatially targeting conservation strategies to halt extinctions.


There can be little doubt that there are truly colossal challenges associated with providing food, fibre and energy for an expanding world population without further accelerating already rapid rates of biodiversity loss and undermining the ecosystem processes on which we all depend. These challenges are further complicated by rapid changes in climate and its additional direct impacts on agriculture, biodiversity and ecological processes. There are many different viewpoints about the best way to deal with the myriad issues associated with land use intensification and this book canvasses a number of these from different parts of the tropical and temperate world. Chapters focus on whether science can suggest new and improved approaches to reducing the conflict between productive land use and biodiversity conservation. Who should read this book? Policy makers in regional, state and federal governments, as well as scientists and the interested lay public.


2014 ◽  
Vol 42 (1) ◽  
pp. 12-19 ◽  
Author(s):  
CHRISTOPHER M. HAMILTON ◽  
WAYNE E. THOGMARTIN ◽  
VOLKER C. RADELOFF ◽  
ANDREW J. PLANTINGA ◽  
PATRICIA J. HEGLUND ◽  
...  

SUMMARYLand-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.


Sign in / Sign up

Export Citation Format

Share Document