scholarly journals Using ensemble reforecasts to generate flood thresholds for improved global flood forecasting

Author(s):  
Ervin Zsoter ◽  
Christel Prudhomme ◽  
Elisabeth Stephens ◽  
Hannah Cloke

<p>Global flood forecasting systems rely on definition of flood thresholds for identifying upcoming flood events. Existing methods for flood threshold definition can often be based on reanalysis datasets and single thresholds, used for all forecast lead times, but this leads to inconsistencies between how the extreme flood events are represented in the flood thresholds and the ensemble forecasts.</p><p>This paper explores the potential benefits of using river flow ensemble reforecasts to generate flood thresholds that can deliver improved reliability and skill. Using the Copernicus Emergency Management Service’s Global Flood Awareness System, the impact of the dataset and the method used to sample the annual maxima to define flood thresholds, are analysed in terms of threshold magnitude, forecast reliability and skill for different flood severity levels and lead times.</p><p>It was found that the variability of the threshold magnitudes, when estimated from the different annual maxima samples, can be extremely large, as can the subsequent impact on forecast skill. It was also found that reanalysis-based thresholds should only be used for the first few days, after which ensemble-reforecast-based thresholds, that vary with forecast lead time and can account for the forecast bias trends, provide more reliable and skilful flood forecasts.</p><p> </p><p> </p>

Mycorrhiza ◽  
2021 ◽  
Author(s):  
P. W. Thomas

AbstractVery little is known about the impact of flooding and ground saturation on ectomycorrhizal fungi (EcM) and increasing flood events are expected with predicted climate change. To explore this, seedlings inoculated with the EcM species Tuber aestivum were exposed to a range of flood durations. Oak seedlings inoculated with T. aestivum were submerged for between 7 and 65 days. After a minimum of 114-day recovery, seedling growth measurements were recorded, and root systems were destructively sampled to measure the number of existing mycorrhizae in different zones. Number of mycorrhizae did not display correlation with seedling growth measurements. Seven days of submersion resulted in a significant reduction in mycorrhizae numbers and numbers reduced most drastically in the upper zones. Increases in duration of submersion further impacted mycorrhizae numbers in the lowest soil zone only. T. aestivum mycorrhizae can survive flood durations of at least 65 days. After flooding, mycorrhizae occur in higher numbers in the lowest soil zone, suggesting a mix of resilience and recovery. The results will aid in furthering our understanding of EcM but also may aid in conservation initiatives as well as providing insight for those whose livelihoods revolve around the collection of EcM fruiting bodies or cropping of the plant partners.


2021 ◽  
Author(s):  
Trine J. Hegdahl ◽  
Kolbjørn Engeland ◽  
Ingelin Steinsland ◽  
Andrew Singleton

Abstract. The novelty of this study is to evaluate the univariate and the combined effects of including both precipitation and temperature forecasts in the preprocessing together with the postprocessing of streamflow for forecasting of floods as well as all streamflow values for a large sample of catchments. A hydrometeorological forecasting chain in an operational flood forecasting setting with 119 Norwegian catchments was used. This study evaluates the added value of pre- and postprocessing methods for ensemble forecasts in a hydrometeorological forecasting chain in an operational flood forecasting setting with 119 Norwegian catchments. Two years of ECMWF ensemble forecasts of temperature (T) and precipitation (P) with a lead-time up to 9 days were used to force the operational hydrological HBV model to establish streamflow forecasts. Two approaches to preprocess the temperature and precipitation forecasts were tested. 1) An existing approach applied to the gridded forecasts using quantile mapping for temperature and a Bernoulli-gamma distribution for precipitation. 2) Bayesian model averaging (BMA) applied to catchment average values of temperature and precipitation. BMA was also used for postprocessing catchment streamflow forecasts. Ensemble forecasts of streamflow were generated for a total of fourteen schemes based on combinations of raw, preprocessed, and postprocessed forecasts in the hydrometeorological forecasting chain. The aim of this study is to assess which pre- and postprocessing approaches should be used to improve streamflow and flood forecasts and look for regional or seasonal patterns in preferred approaches. The forecasts were evaluated for two datasets: i) all streamflows and ii) flood events with streamflow above mean annual flood. Evaluations were based on reliability, continuous ranked probability score (CRPS) and -skill score (CRPSS). For the flood dataset, the critical success index (CSI) was used. Evaluations based on all streamflow data showed that postprocessing improved the forecasts only up to a lead-time of two to three days, whereas preprocessing T and P using BMA improved the forecasts for 50 %–90 % of the catchments beyond three days lead-time. However, for flood events, the added value of pre- and postprocessing is smaller. Preprocessing of P and T gave better CRPS for marginally more catchments compared to the other schemes. Based on CSI, we found that many of the forecast schemes perform equally well. Further, we found large differences in the ability to issue warnings between spring and autumn floods. There was almost no ability to predict autumn floods beyond 3 days, whereas the spring floods had predictability up to 9 days for many events and catchments. The results indicate that the ensemble forecasts have problems in predicting correct autumn precipitation, and the uncertainty is larger for heavy autumn precipitation compared to spring events when temperature driven snow melt is important. To summarize we find that the flood forecasts benefit from most pre-and postprocessing schemes, although the best processing approaches depend on region, catchment, and season, and that the processing scheme should be tailored to each catchment, lead time, season and the purpose of the forecasting.


2021 ◽  
Author(s):  
Helen Titley ◽  
Hannah Cloke ◽  
Shaun Harrigan ◽  
Florian Pappenberger ◽  
Christel Prudhomme ◽  
...  

<p>Global ensemble forecast models have been shown to have good skill in forecasting the track probabilities of tropical cyclones worldwide, but less well-studied is their ability to predict the hazards resulting from tropical cyclones, which in the case of fluvial flooding can extend far from the landfall location traditionally focussed on in operational tropical cyclone warnings. This work aims to investigate the key factors that influence the predictability of fluvial flood severity from tropical cyclones, using forecasts from the Global Flood Awareness System (GloFAS). GloFAS is jointly developed by the European Commission and the European Centre for Medium-Range Weather Forecasts (ECMWF) and is designed to provide a global overview of upcoming flood events to decision makers as part of the Copernicus Emergency Management Service, producing probabilistic river discharge forecasts driven by global ECMWF ensemble forecasts coupled to a hydrological model. This presentation will explore the chain of uncertainty through the forecasting process for several recent tropical cyclone flood events including Hurricane Iota and Cyclone Nivar. It investigates the influence on the overall predictability and uncertainty of the fluvial flood forecasts of various components of the forecasting chain, including the track, intensity, and precipitation forecasts for the tropical cyclone, and the hydrological catchment conditions and modelling.</p>


2015 ◽  
Vol 112 (8) ◽  
pp. 2355-2360 ◽  
Author(s):  
Edwin R. C. Baynes ◽  
Mikaël Attal ◽  
Samuel Niedermann ◽  
Linda A. Kirstein ◽  
Andrew J. Dugmore ◽  
...  

Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (100 to 103 h). However, their impacts are rarely considered in studies of long-term landscape evolution (>103 y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic 3He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m3/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.


Author(s):  
Gandome Mayeul Leger Davy Quenum ◽  
Joël Arnault ◽  
Nana Ama Klutse ◽  
Philip Oguntunde ◽  
Harald Kunstmann

Since 2000s, most of West-African countries and particularly Benin have experienced an increased frequency of extreme flood events. In this study we focus on the case of the Ouémé-river basin in Benin for the period 2008-2010. To investigate on how to early warn flood events in this basin, the coupled atmosphere-hydrology model system WRF-Hydro is selected. Such a coupled model allows to explore the contribution of atmospheric components into the flood event, and its ability to simulate and predict accurate streamflow. The potential of WRF-Hydro in correctly simulating streamflow in the Ouémé-river basin is assessed by forcing the model with operational analysis datasets from the ECMWF. Atmospheric and land surface processes are resolved at a spatial resolution of 5km. The additional surface and subsurface water flow routing is computed at a resolution 1:10. Key parameters of the hydrological module of WRF-Hydro are calibrated offline, and tested online with the coupled WRF-Hydro. The uncertainty of atmospheric modeling on coupled results is assessed with the stochastic kinetic-energy backscatter scheme (SKEBS). WRF-Hydro is able to simulate the discharge in Ouémé river on offline and fully-coupled modes with a Kling-Gupta Efficiency (KGE) around 0.70 and 076 respectively. In fully-coupled mode the model captures the flood event that occurred in 2010. A stochastic perturbation ensemble of 10 members for three rain seasons shows that the coupled model performance in terms of KGE is from 0.14 to 0.79. This ability in realistically reproducing observed discharge in the Ouémé-river basin demonstrates the potential of the coupled WRF-Hydro modeling system for future flood forecasting applications.


2017 ◽  
Vol 32 (4) ◽  
pp. 1491-1508 ◽  
Author(s):  
Morris A. Bender ◽  
Timothy P. Marchok ◽  
Charles R. Sampson ◽  
John A. Knaff ◽  
Matthew J. Morin

Abstract The impact of storm size on the forecast of tropical cyclone storm track and intensity is investigated using the 2016 version of the operational GFDL hurricane model. Evaluation was made for 1529 forecasts in the Atlantic, eastern Pacific, and western North Pacific basins, during the 2014 and 2015 seasons. The track and intensity errors were computed from forecasts in which the 34-kt (where 1 kt = 0.514 m s−1) wind radii obtained from the operational TC vitals that are used to initialize TCs in the GFDL model were replaced with wind radii estimates derived using an equally weighted average of six objective estimates. It was found that modifying the radius of 34-kt winds had a significant positive impact on the intensity forecasts in the 1–2 day lead times. For example, at 48 h, the intensity error was reduced 10%, 5%, and 4% in the Atlantic, eastern Pacific, and western North Pacific, respectively. The largest improvements in intensity forecasts were for those tropical cyclones undergoing rapid intensification, with a maximum error reduction in the 1–2 day forecast lead time of 14% and 17% in the eastern and western North Pacific, respectively. The large negative intensity biases in the eastern and western North Pacific were also reduced 25% and 75% in the 12–72-h forecast lead times. Although the overall impact on the average track error was neutral, forecasts of recurving storms were improved and tracks of nonrecurving storms degraded. Results also suggest that objective specification of storm size may impact intensity forecasts in other high-resolution numerical models, particularly for tropical cyclones entering a rapid intensification phase.


2007 ◽  
Vol 11 ◽  
pp. 31-36 ◽  
Author(s):  
T. Weichel ◽  
F. Pappenberger ◽  
K. Schulz

Abstract. After the extreme flood event of the Elbe in 2002 the definition of flood risk areas by law and their simulation became more important in Germany. This paper describes a concept of an analysis framework to improve the localisation and duration of validity of flood inundation maps. The two-dimensional finite difference model TrimR2D is used and linked to a Monte-Carlo routine for parameter sampling as well as to selected performance measures. The purpose is the investigation of the impact of different spatial resolutions and the influence of changing land uses in the simulation of flood inundation areas. The technical assembling of the framework is realised and beside the model calibration, first tests with different parameter ranges were done. Preliminary results show good correlations with observed data, but the investigation of shifting land uses reflects only poor changes in the flood extension.


2021 ◽  
Author(s):  
Manuela I. Brunner ◽  
Louise Slater

Abstract. Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System (EFAS) to increase the sample size available to estimate the frequency of extreme local and regional flood events. We assess the added value of such pooling, determine where in Central Europe one might expect the most extreme events, and evaluate how event extremeness is related to physiographic and meteorological catchment characteristics. We work with a set of 234 catchments from the Global Runoff Data Center for which performance of simulated floods is satisfactory when compared to observed streamflow. We pool EFAS-simulated flood events for 10 perturbed ensemble members and lead times from 22 to 46 days, where flood events are only weakly dependent (< 0.25 average correlation across lead times). The resulting large ensemble (130 time series instead of one) enables analyses of very extreme events, which occur less than twice a century. We demonstrate that such ensemble pooling produces more robust estimates with considerably reduced uncertainty bounds (by ~80 % on average) than observation-based estimates but may equally introduce biases arising from the simulated meteorology and hydrological model. Our results show that specific flood return levels are highest in steep and wet regions and are comparably low in regions with strong flow regulation through dams. Furthermore, our pooled flood estimates indicate that the probability of regional flooding is higher in Central Europe and Great Britain than in Scandinavia. We conclude that reforecast ensemble pooling is an efficient approach to increase sample size and to derive robust local and regional flood estimates in regions with sufficient hydrological model performance.


2014 ◽  
Vol 11 (5) ◽  
pp. 5559-5597 ◽  
Author(s):  
V. Thiemig ◽  
B. Bisselink ◽  
F. Pappenberger ◽  
J. Thielen

Abstract. The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this paper the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 where important floods were observed. Results were verified with ground measurements of 36 subcatchments as well as with reports of various flood archives. Results showed that AFFS detected around 70% of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (>1 week) and large affected areas (>10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for "Save flooding" illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.


Sign in / Sign up

Export Citation Format

Share Document