Assessing tide correction under altimetry tracks: an innovative validation methodology using USV (Unmanned Surface Vehicle) in-situ measurements

Author(s):  
Yann-Treden Tranchant ◽  
Clémence Chupin ◽  
Laurent Testut ◽  
Valérie Ballu

<p>Satellite altimetry recently reached an unprecedented level of global coverage with 7 missions flying simultaneously. While altimeters have been originally designed for open ocean and have improved our understanding of the large-scale ocean dynamic, the exploitation of coastal altimetry data remains a challenge that mobilizes a large effort in the scientific community. The future SWOT mission will solve this issue and certainly revolutionize our view of the coastal waters by<strong> </strong>mapping SSH with an unprecedented resolution.</p><p>One challenging aspect of coastal altimetry is the lack of accuracy in some geophysical corrections, which are critical to derive accurate sea-surface height anomalies (SSHA) near the coast. Especially, uncertainties in ocean tides is still an issue for the exploitation of altimetry in nearshore regions. Global tide models are usually used in most altimetry products. Despite their considerable progress in the last decade, their accuracy tends to decrease near the coast (Lyard, F. et Al., 2020).</p><p>Difficulties encountered in modelling the coastal tide are mainly due to its non-linear behaviour caused by changes in depth, shoreline interactions or varying bottom drag as it propagates onto shallower waters. The distortion of tidal propagation can thus be represented as additional tidal waves, which reflect overtides compound tides. These interactions are numerous and a great number of constituents have to be considered in order to reproduce accurately the tidal signal in shallow regions. Consequently, efforts in developing regional modelling of coastal areas are encouraged, as well as the consideration of ocean/shelf/land as a modelling continuum, for the preparation and exploitation of the future SWOT mission (Ayoub, N. et Al., 2015).</p><p>Moreover, these shallow-water waves exhibit smaller wavelengths than major astronomical ones, and there is a critical need for observations with short space and time scales to appreciate their spatial variability. While tide models are classically validated against tide-gauges confined to the coast, new opportunities are emerging with the development of kinematic GNSS systems. Chupin et Al. (2020), have demonstrated the ability of the Cyclopée system (a combination of a GNSS antenna and an acoustic altimeter) mounted on an USV to map sea surface height in motion. At a fixed point, the Cyclopée system provides similar accuracy than the best tide-gauge systems (and is therefore a way to propagate tide gauges measurements under satellites tracks).</p><p>Through a methodology based on crossover measurements; we demonstrate in this study the potential of the USV PAMELi, developed at the University of La Rochelle, for assessing tide corrections under altimetry tracks, in the scope of future coastal altimetry applications (e.g. storm surge or wave setup). For this purpose, the Pertuis Charentais area (France) is addressed as a modelling case study with a new regional barotropic configuration based on SCHISM model (Zhang, J. et al., 2016). After being compared against coastal tide-gauges, our SCHISM model as well as other available global solutions are assessed though this methodology applied under the pass 216 of Sentinel-3A.</p>

2006 ◽  
Vol 36 (9) ◽  
pp. 1739-1750 ◽  
Author(s):  
Cécile Cabanes ◽  
Thierry Huck ◽  
Alain Colin de Verdière

Abstract Interannual sea surface height variations in the Atlantic Ocean are examined from 10 years of high-precision altimeter data in light of simple mechanisms that describe the ocean response to atmospheric forcing: 1) local steric changes due to surface buoyancy forcing and a local response to wind stress via Ekman pumping and 2) baroclinic and barotropic oceanic adjustment via propagating Rossby waves and quasi-steady Sverdrup balance, respectively. The relevance of these simple mechanisms in explaining interannual sea level variability in the whole Atlantic Ocean is investigated. It is shown that, in various regions, a large part of the interannual sea level variability is related to local response to heat flux changes (more than 50% in the eastern North Atlantic). Except in a few places, a local response to wind stress forcing is less successful in explaining sea surface height observations. In this case, it is necessary to consider large-scale oceanic adjustments: the first baroclinic mode forced by wind stress explains about 70% of interannual sea level variations in the latitude band 18°–20°N. A quasi-steady barotropic Sverdrup response is observed between 40° and 50°N.


2006 ◽  
Vol 36 (9) ◽  
pp. 1751-1762 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen

Abstract Large-scale sea surface height (SSH) changes in the extraequatorial South Pacific Ocean are investigated using satellite altimetry data of the past 12 yr. The decadal SSH signals in the 1990s were dominated by an increasing trend in the 30°–50°S band and a decreasing trend in the central South Pacific Ocean poleward of 50°S. In recent years since 2002 there has been a reversal in both of these trends. Spatially varying low-frequency SSH signals are also found in the tropical region of 10°–25°S where the decadal SSH trend is negative in the eastern basin, but positive in the western basin. To clarify the causes for these observed spatially varying SSH signals, a 1½-layer reduced-gravity model that includes the wind-driven baroclinic Rossby wave dynamics and the responses forced by SSH changes along the South American coast was adopted. The model hindcasts the spatially varying decadal trends in the midlatitude and the eastern tropical regions well. Accumulation of the wind-forced SSH anomalies along Rossby wave characteristics is found to be important for both previously reported long-term trends and their reversals in recent years. The boundary forcing associated with the time-varying SSH signals along the South American coast is crucial for understanding the observed SSH signals of all time scales in the eastern tropical South Pacific basin, but it has little impact upon the midlatitude interior SSH signals.


2007 ◽  
Vol 24 (6) ◽  
pp. 1078-1085 ◽  
Author(s):  
Rui M. Ponte ◽  
Carl Wunsch ◽  
Detlef Stammer

Fitting ocean models to altimeter sea surface height (SSH) measurements requires knowledge of instrument noise (radar noise, sea state bias, path delay corrections, and orbit errors) and “representation” errors related to SSH signals (e.g., tidal or pressure driven) not computed in the models. Comparisons between the independent Ocean Topography Experiment (TOPEX)/Poseidon and Jason-1 altimetric missions when they were in identical orbits show that point by point the data are consistent within the mission specifications of about 3-cm rms, but large-scale dependences exist in the data differences, and these are both poorly known and capable of introducing major errors into oceanic state estimates. Here the authors focus on the time-variable component of the spatially dependent errors. The analysis reveals errors ranging from 2 cm in the Tropics to 4 cm at mid- and high latitudes and roughly consistent with a dependence of instrument noise on significant wave height. Analysis of the representation errors suggests that, over the deep ocean, uncertainties associated with the simplifying assumption of an inverted barometer response to pressure loading are larger than the remaining errors in modeling the large-scale tides. Over extensive regions, however, errors associated with eddy signals missing in coarse resolution models dominate. Obtaining a more quantitative estimate of the latter errors remains a challenge.


2012 ◽  
Vol 2 (4) ◽  
pp. 290-301 ◽  
Author(s):  
T. Hayden ◽  
E. Rangelova ◽  
M. G. Sideris ◽  
M. Véronneau

AbstractThe existing Canadian Geodetic Vertical Datum of 1928 (CGVD28) does not meet the needs of the modern user in terms of accuracy and accessibility. As a result, Canada plans to implement a geoid-based and global navigation satellite system (GNSS)-accessible vertical datum by 2013. One of the primary concerns in realizing this new vertical datum is to determine a W0 value that will represent the potential of the zero height surface. The objective of this study is to evaluate W0 by averaging the potential of points on the mean sea water surface utilizing tide gauge recordings and gravity field and steady-state ocean circulation explorer (GOCE)-based global geopotential models. In order to assess the performance of the GOCE-based models for the computation of W0, the models are extended with the high resolution gravitational model EGM2008. Regional gravimetric geoid models are also used for the estimation of W0. Additionally, local sea surface topography models are utilized in order to validate the W0 results at the tide gauges. Excluding the Arctic coast, the W0 values obtained from both tide gauges and oceanic sea surface topography models are not statistically different from the International Earth Rotation and Reference Systems Service (IERS) 2010 global conventional value 62636856.00 m2/s2.


2004 ◽  
Vol 21 (12) ◽  
pp. 1876-1893 ◽  
Author(s):  
Charlie N. Barron ◽  
A. Birol Kara ◽  
Harley E. Hurlburt ◽  
C. Rowley ◽  
Lucy F. Smedstad

Abstract A ⅛° global version of the Navy Coastal Ocean Model (NCOM), operational at the Naval Oceanographic Office (NAVOCEANO), is used for prediction of sea surface height (SSH) on daily and monthly time scales during 1998–2001. Model simulations that use 3-hourly wind and thermal forcing obtained from the Navy Operational Global Atmospheric Prediction System (NOGAPS) are performed with/without data assimilation to examine indirect/direct effects of atmospheric forcing in predicting SSH. Model–data evaluations are performed using the extensive database of daily averaged SSH values from tide gauges in the Atlantic, Pacific, and Indian Oceans obtained from the Joint Archive for Sea Level (JASL) center during 1998–2001. Model–data comparisons are based on observations from 282 tide gauge locations. An inverse barometer correction was applied to SSH time series from tide gauges for model–data comparisons, and a sensitivity study is undertaken to assess the impact of the inverse barometer correction on the SSH validation. A set of statistical metrics that includes conditional bias (Bcond), root-mean-square (rms) difference, correlation coefficient (R), and nondimensional skill score (SS) is used to evaluate the model performance. It is shown that global NCOM has skill in representing SSH even in a free-running simulation, with general improvement when SSH from satellite altimetry and sea surface temperature (SST) from satellite IR are assimilated via synthetic temperature and salinity profiles derived from climatological correlations. When the model was run from 1998 to 2001 with NOGAPS forcing, daily model SSH comparisons from 612 yearlong daily tide gauge time series gave a median rms difference of 5.98 cm (5.77 cm), an R value of 0.72 (0.76), and an SS value of 0.45 (0.51) for the ⅛° free-running (assimilative) NCOM. Similarly, error statistics based on the 30-day running averages of SSH time series for 591 yearlong daily tide gauge time series over the time frame 1998–2001 give a median rms difference of 3.63 cm (3.36 cm), an R value of 0.83 (0.85), and an SS value of 0.60 (0.64) for the ⅛° free-running (assimilated) NCOM. Model– data comparisons show that skill in 30-day running average SSH time series is as much as 30% higher than skill for daily SSH. Finally, SSH predictions from the free-running and assimilative ⅛° NCOM simulations are validated against sea level data from the tide gauges in two different ways: 1) using original detided sea level time series from tide gauges and 2) using the detided data with an inverse barometer correction derived using daily mean sea level pressure extracted from NOGAPS at each location. Based on comparisons with 612 yearlong daily tide gauge time series during 1998–2001, the inverse barometer correction lowered the median rms difference by about 1 cm (15%–20%). Results presented in this paper reveal that NCOM is able to predict SSH with reasonable accuracies, as evidenced by model simulations performed during 1998–2001. In an extension of the validation over broader ocean regions, the authors find good agreement in amplitude and distribution of SSH variability between NCOM and other operational model products.


2021 ◽  
Author(s):  
Leon Jänicke ◽  
Andra Ebener ◽  
Sönke Dangendorf ◽  
Arne Arns ◽  
Michael Schindelegger ◽  
...  

<p>Tide gauges throughout the North Sea basin show significant changes in the local tidal regime since the mid-20th century, especially in the German Bight area. These changes were analyzed within the DFG-funded project TIDEDYN (Analyzing long term changes in the tidal dynamics of the North Sea, project number 290112166) and the final results were recently published in Jänicke et al. (2020, https://doi.org/10.1029/2020JC016456).</p><p>In this paper, we document an exceptional large-spatial scale case of changes in tidal range in the North Sea, featuring pronounced trends between -2.3 mm/yr at tide gauges in the UK and up to 7 mm/yr in the German Bight between 1958 and 2014. These changes are spatially heterogeneous and driven by a superposition of local and large-scale processes within the basin. We use principal component analysis to separate large-scale signals appearing coherently over multiple stations from rather localized changes. We identify two leading principal components (PCs) that explain about 69% of tidal range changes in the entire North Sea including the divergent trend pattern along UK and German coastlines that reflects movement of the region’s semidiurnal amphidromic areas. By applying numerical and statistical analyses, we can assign a baroclinic (PC1) and a barotropic large-scale signal (PC2), explaining a large part of the overall variance. A comparison between PC2 and tide gauge records along the European Atlantic coast, Iceland and Canada shows significant correlations on time scales of less than 2 years, which points to an external and basin-wide forcing mechanism. By contrast, PC1 dominates in the southern North Sea and originates, at least in part, from stratification changes in nearby shallow waters. In particular, from an analysis of observed density profiles, we suggest that an increased strength and duration of the summer pycnocline has stabilized the water column against turbulent dissipation and allowed for higher tidal elevations at the coast.</p><p>We would like to present these research results and the content of the paper (cf. Jänicke et al., 2020) at vEGU21, hoping to encourage subsequent questions and further discussions.</p>


2021 ◽  
Author(s):  
Francesca Doglioni ◽  
Robert Ricker ◽  
Benjamin Rabe ◽  
Torsten Kanzow

Abstract. In recent decades the decline of the Arctic sea ice has modified vertical momentum fluxes from the atmosphere to the ice and the ocean, thereby affecting the surface circulation. In the past ten years satellite altimetry has contributed to understand these changes. However, data from ice-covered regions require dedicated processing, originating inconsistency between ice-covered and open ocean regions in terms of biases, corrections and data coverage. Thus, efforts to generate consistent Arctic-wide datasets are still required to enable the study of the Arctic Ocean surface circulation at basin-wide scales. Here we provide and assess a monthly gridded dataset of sea surface height anomaly and geostrophic velocity. This dataset is based on Cryosat-2 observations over ice-covered and open ocean areas of the Arctic up to 88° N for the period 2011 to 2018, interpolated using the Data-Interpolating Variational Analysis (DIVA) method. Geostrophic velocity was not available north of 82° N before this study. To examine the robustness of our results, we compare the generated fields to one independent altimetry dataset and independent data of ocean bottom pressure, steric height and near-surface ocean velocity from moorings. Results from the comparison to near-surface ocean velocity show that our geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km. We further discuss the seasonal cycle of sea surface height and geostrophic velocity in the context of previous literature. Large scale features emerge, i.e. Arctic-wide maximum sea surface height between October and January, with the highest amplitude over the shelves, and basin wide seasonal acceleration of Arctic slope currents in winter. We suggest that this dataset can be used to study not only the large scale sea surface height and circulation but also the regionally confined boundary currents. The dataset is available in netCDF format from PANGAEA at [data currently under review].


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Claudine Hauri ◽  
Rémi Pagès ◽  
Andrew M. P. McDonnell ◽  
Malte F. Stuecker ◽  
Seth L. Danielson ◽  
...  

AbstractUptake of anthropogenic carbon dioxide from the atmosphere by the surface ocean is leading to global ocean acidification, but regional variations in ocean circulation and mixing can dampen or accelerate apparent acidification rates. Here we use a regional ocean model simulation for the years 1980 to 2013 and observational data to investigate how ocean fluctuations impact acidification rates in surface waters of the Gulf of Alaska. We find that large-scale atmospheric forcing influenced local winds and upwelling strength, which in turn affected ocean acidification rate. Specifically, variability in local wind stress curl depressed sea surface height in the subpolar gyre over decade-long intervals, which increased upwelling of nitrate- and dissolved inorganic carbon-rich waters and enhanced apparent ocean acidification rates. We define this sea surface height variability as the Northern Gulf of Alaska Oscillation and suggest that it can cause extreme acidification events that are detrimental to ecosystem health and fisheries.


2013 ◽  
Vol 26 (23) ◽  
pp. 9713-9726 ◽  
Author(s):  
Philip R. Thompson ◽  
Gary T. Mitchum ◽  
Cedric Vonesch ◽  
Jianke Li

Interannual to multidecadal variability of winter storminess in the eastern United States was studied using water level measurements from coastal tide gauges. The proximity to the coast of the primary winter storm track in the region allows the use of tide gauges to study temporal modulations in the frequency of these storms. Storms were identified in high-passed, detided sea level anomalies in 20 gauges from all coasts of North America to assess variability in winter storminess along particular storm tracks. The primary result is a significant multidecadal increase in the number of storms affecting the southeastern United States from the early to late twentieth century. The authors propose that this change is due to an increased tendency for the jet stream to meander south over the eastern United States since the 1950s. This mechanism is supported by long-term changes in the large-scale sea level pressure pattern over North America. The nature of the multidecadal change in storm frequency is unclear, because limited tide gauge record lengths prevent distinguishing between a trend and an oscillation.


Sign in / Sign up

Export Citation Format

Share Document