Application of Xin'anjiang Model and Wetspa Model in the Inflow Forecasting of Shiquan Reservoir

Author(s):  
Siyu Cai ◽  
Ruifang Yuan ◽  
Weihong Liao ◽  
Liang Wu

<p>In order to improve the accuracy of the inflow forecasting of Shiquan Reservoir in the Han River Basin, this paper compared the application effects of Xin'anjing model and Wetspa model. The study collected the rainfall and runoff data from 2009 to 2015, as well as the DEM, land use and soil data with 1000´1000m grid size. The model calibration and verification periods were from 2009 to 2012 and from 2013 to 2015, respectively. In addition to using the runoff depth and the determination coefficient to evaluate the accuracy of the two models, the flow relative error CR1, model confidence coefficient CR2, Nash-Sutcliffe efficiency CR3, logarithmic version of Nash-Sutcliffe efficiency CR4 for low flow, improved Nash-Sutcliffe efficiency CR5 for high flow were adopted to analyze the simulation results of the two models. The results showed that the simulation results of the Wetspa model could be used as a supplement to the simulation results of the Xin'anjiang model, providing high-precision flood forecasting results for the scheduling decisions of Shiquan Reservoir in terms of time and space.</p>

2008 ◽  
Vol 30 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Vu Van Nghi ◽  
Dang Thanh Lam ◽  
Do Duc Dung

The study presents the hydrological simulations for the Nong Son catchment, a drainage area of the Vu Gia-Thu Bon basin in the Central Vietnam, by using the NAM and XINANJIANG models. Simulation results for both models show good agreement between calculated and observed discharges at the stream gauge. The overall water balance error is less than ±10%, Nash-Sut cliffe efficiency \(R^2\)  above 0.85, and Pearson correlation coefficient \(r\) above 0.92 in both model calibration and verification period. Although NAM's performance shows a slightly better correspondence between the discharges at the stream gauge, the XINANJIANG model shows a relatively better reproduction of the runoff components (i.e. overland flow, interflow and baseflow).


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1614 ◽  
Author(s):  
Somchit Amnatsan ◽  
Sayaka Yoshikawa ◽  
Shinjiro Kanae

Reservoir inflow forecasting is crucial for appropriate reservoir management, especially in the flood season. Forecasting for this season must be sufficiently accurate and timely to allow dam managers to release water gradually for flood control in downstream areas. Recently, several models and methodologies have been developed and applied for inflow forecasting, with good results. Nevertheless, most were reported to have weaknesses in capturing the peak flow, especially rare extreme flows. In this study, an analogue-based forecasting method, designated the variation analogue method (VAM), was developed to overcome this weakness. This method, the wavelet artificial neural network (WANN) model, and the weighted mean analogue method (WMAM) were used to forecast the monthly reservoir inflow of the Sirikit Dam, located in the Nan River Basin, one of the eight sub-basins of the Chao Phraya River Basin in Thailand. It is one of four major dams in the Chao Phraya Basin, with a maximum storage of 10.64 km3, which supplies water to 22 provinces in this basin, covering an irrigation area of 1,513,465 hectares. Due to the huge extreme monthly inflow in August, with inflow of more than 3 km3 in 1985 and 2011, monthly or longer lead time inflow forecasting is needed for proper water and flood control management of this dam. The results of forecasting indicate that the WANN model provided good forecasting for whole-year forecasting including both low-flow and high-flow patterns, while the WMAM model provided only satisfactory results. The VAM showed the best forecasting performance and captured the extreme inflow of the Sirikit Dam well. For the high-flow period (July–September), the WANN model provided only satisfactory results, while those of the WMAM were markedly poorer than for the whole year. The VAM showed the best capture of flow in this period, especially for extreme flow conditions that the WANN and WMAM models could not capture.


1997 ◽  
Vol 36 (5) ◽  
pp. 177-184
Author(s):  
Lennart Heip ◽  
Johan Van Assel ◽  
Patrick Swartenbroekx

Within the framework of an EC-funded SPRINT-project, a sewer flow quality model of a typical rural Flemish catchment was set up. The applicability of such a model is demonstrated. Furthermore a methodology for model building, data collection and model calibration and verification is proposed. To this end an intensive 9 month measuring campaign was undertaken. The hydraulic behaviour of the sewer network was continuously monitored during those 9 months. During both dry weather flow (DWF) and wet weather flow (WWF) a number of sewage samples were taken and analysed for BOD, COD, TKN, TP and TSS. This resulted in 286 WWF and 269 DWF samples. The model was calibrated and verified with these data. Finally a software independent methodology for interpretation of the model results is proposed.


2021 ◽  
Author(s):  
Florian Caillon ◽  
Katharina Besemer ◽  
Peter Peduzzi ◽  
Jakob Schelker

AbstractFlood events are now recognized as potentially important occasions for the transfer of soil microbes to stream ecosystems. Yet, little is known about these “dynamic pulses of microbial life” for stream bacterial community composition (BCC) and diversity. In this study, we explored the potential alteration of stream BCC by soil inoculation during high flow events in six pre-alpine first order streams and the larger Oberer Seebach. During 1 year, we compared variations of BCC in soil water, stream water and in benthic biofilms at different flow conditions (low to intermediate flows versus high flow). Bacterial diversity was lowest in biofilms, followed by soils and highest in headwater streams and the Oberer Seebach. In headwater streams, bacterial diversity was significantly higher during high flow, as compared to low flow (Shannon diversity: 7.6 versus 7.9 at low versus high flow, respectively, p < 0.001). Approximately 70% of the bacterial operational taxonomic units (OTUs) from streams and stream biofilms were the same as in soil water, while in the latter one third of the OTUs were specific to high flow conditions. These soil high-flow OTUs were also found in streams and biofilms at other times of the year. These results demonstrate the relevance of floods in generating short and reoccurring inoculation events for flowing waters. Moreover, they show that soil microbial inoculation during high flow enhances microbial diversity and shapes fluvial BCC even during low flow. Hence, soil microbial inoculation during floods could act as a previously overlooked driver of microbial diversity in headwater streams.


CORROSION ◽  
1959 ◽  
Vol 15 (4) ◽  
pp. 29-32
Author(s):  
M. KRULFELD ◽  
M. C. BLOOM ◽  
R. E. SEEBOLD

Abstract A method of applying the hydrogen effusion method to the measurement of corrosion rates in dynamic aqueous systems at elevated temperature and pressure is described. Data obtained in low carbon steel systems are presented, including (1) reproducibility obtained in measured hydrogen effusion rates at a flow velocity of 1 foot per second at a temperature of 600 F and 2000 psi, and (2) a quantitative comparison between the hydrogen effusion rates in static and in low flow velocity dynamic systems at this temperature and pressure. Some observations are included on corrosion rate measurements in a high flow velocity (30 feet per second) loop by the hydrogen effusion method. Implications of these measurements with regard to the comparison between high flow velocity corrosion and low flow velocity corrosion are mentioned and some data indicating high local sensitivity of the hydrogen effusion method are noted. Some possible difficulties involved in the method are pointed out. 2.3.4


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


2006 ◽  
Vol 110 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Julian M. Stewart ◽  
June L. Glover ◽  
Marvin S. Medow

POTS (postural tachycardia syndrome) is associated with low blood volume and reduced renin and aldosterone; however, the role of Ang (angiotensin) II has not been investigated. Previous studies have suggested that a subset of POTS patients with increased vasoconstriction related to decreased bioavailable NO (nitric oxide) have decreased blood volume. Ang II reduces bioavailable NO and is integral to the renin–Ang system. Thus, in the present study, we investigated the relationship between blood volume, Ang II, renin, aldosterone and peripheral blood flow in POTS patients. POTS was diagnosed by 70° upright tilt, and supine calf blood flow, measured by venous occlusion plethysmography, was used to subgroup POTS patients. A total of 23 POTS patients were partitioned; ten with low blood flow, eight with normal flow and five with high flow. There were ten healthy volunteers. Blood volume was measured by dye dilution. All biochemical measurements were performed whilst supine. Blood volume was decreased in low-flow POTS (2.14±0.12 litres/m2) compared with controls (2.76±0.20 litres/m2), but not in the other subgroups. PRA (plasma renin activity) was decreased in low-flow POTS compared with controls (0.49±0.12 compared with 0.90±0.18 ng of Ang I·ml−1·h−1 respectively), whereas plasma Ang II was increased (89±20 compared with 32±4 ng/l), but not in the other subgroups. PRA correlated with aldosterone (r=+0.71) in all subjects. PRA correlated negatively with blood volume (r=−0.72) in normal- and high-flow POTS, but positively (r=+0.65) in low-flow POTS. PRA correlated positively with Ang II (r=+0.76) in normal- and high-flow POTS, but negatively (r=−0.83) in low-flow POTS. Blood volume was negatively correlated with Ang II (r=−0.66) in normal- and high-flow POTS and in five low-flow POTS patients. The remaining five low-flow POTS patients had reduced blood volume and increased Ang II which was not correlated with blood volume. The data suggest that plasma Ang II is increased in low-flow POTS patients with hypovolaemia, which may contribute to local blood flow dysregulation and reduced NO bioavailability.


The Lancet ◽  
2017 ◽  
Vol 389 (10072) ◽  
pp. 930-939 ◽  
Author(s):  
Elizabeth Kepreotes ◽  
Bruce Whitehead ◽  
John Attia ◽  
Christopher Oldmeadow ◽  
Adam Collison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document