scholarly journals  North Atlantic SST and jet stream anomalies related to European heat waves

Author(s):  
Julian Krüger ◽  
Joakim Kjellsson ◽  
Robin Pilch-Kedzierski ◽  
Karl Bumke ◽  
Katja Matthes

<p>This study highlights the relevance of North Atlantic SSTs and certain jet stream properties for the onset of high European temperatures by using the ERA-5/ERA20c reanalysis product and a targeted experiment with the OpenIFS model. We found that certain European heat wave events could be related to the simultaneous appearance of cold North Atlantic SST events, specific jet stream wave numbers and further to transient and recurrent Rossby wave activity.  </p><p>The coexistence of cold North Atlantic sea surface temperature (SST) and positive European surface temperature anomalies during several summer seasons, like in 1994, 2015 and 2018 motivated us to evaluate whether and how widespread and significant North Atlantic SST anomalies could be associated with European heat waves.Therefore we investigated the role of the jet stream in serving as a medium for a downstream signal propagation.  </p><p>A composite study reveals that cold North Atlantic SST anomalies in summer are accompanied by a more undulating jet stream and a preferred trough-ridge pattern in the North Atlantic-European sector. A  wave analysis covering two-dimensional probability density functions of phase speed and amplitude after compositing cold SSTs show that cold North Atlantic SST events reveal a preference for a dominance of transient waves. In the presence of a trough during cold North Atlantic events, we obtain a slow-down of the transient waves, but not necessarily an amplification or stationarity. The deceleration of the transient waves result in a longer duration of a trough over the North Atlantic accompanied by a ridge downstream over Europe, favouring the conditions for the onset of European heat episodes.</p><p>A study of the jet stream energetics via a kinetic energy power spectrum of meridional wind anomalies reveals that generally a trend shows up towards wave numbers 4 to 6. This is supported by an enhanced activity of specific wave numbers within this increased range during summer seasons of European heat wave events happening in the last two decades. An arising question poses whether the increased energy for a certain wave number originates from an SST forcing or different drivers. We investigate this by performing targeted OpenIFS model runs forced by different SST conditions.</p>

2020 ◽  
Author(s):  
Julian Krüger ◽  
Robin Pilch Kedzierski ◽  
Karl Bumke ◽  
Katja Matthes

Abstract. European heat waves have increased during the two recent decades. Particularly 2015 and 2018 were characterized by a widespread area of cold North Atlantic sea surface temperatures (SSTs) in early summer as well as positive surface temperature anomalies across large parts of the European continent during later summer. The European heat wave of 2018 is further suggested to be induced by a quasi-stationary and high-amplified Rossby wave pattern associated with the so-called quasi-resonant amplification (QRA) mechanism. In this study, we evaluate the North Atlantic SST anomalies and the QRA theory as potential drivers for European heat waves for the first time in combination by using the ERA-5 reanalysis product. A composite and correlation study reveals that cold North Atlantic SST anomalies in early summer favour a more undulating jet stream and a preferred trough-ridge pattern in the North Atlantic–European sector. Further we found that cold North Atlantic SSTs promote a stronger double jet occurrence in this sector. Thus, favorite conditions for a QRA signature are evident together with a necessary preconditioning of a double jet. However, our wave analysis covering two-dimensional probability density distributions of phase speed and amplitude does not confirm a relationship between cold North Atlantic SSTs and the QRA theory, compositing cold SSTs, high double jet indices (DJIs) or both together. Instead, we can show that cold North Atlantic SST events enhance the dominance of transient waves. In the presence of a trough during cold North Atlantic events, we obtain a slow-down of the transient waves, but not necessarily an amplification or stationarity. The deceleration of the transient waves result in a longer duration of a trough over the North Atlantic accompanied by a ridge downstream over Europe, triggering European heat episodes. Although a given DJI preconditioning may also be subject to the onset of certain QRA events, our study found no general relation between cold North Atlantic SST events and the QRA diagnostics. Our study highlights the relevance of cold North Atlantic SSTs for the onset of high European temperatures by affecting travelling jet stream undulations (but without involving QRA in general). Further attention should be drawn not only to the influence of North Atlantic SST year-to-year variability, but also to the effect of the North Atlantic warming hole as a negative SST anomaly in the long term, which is projected to evolve through climate change.


2019 ◽  
Vol 32 (22) ◽  
pp. 7675-7695 ◽  
Author(s):  
Jie Jiang ◽  
Tianjun Zhou

Abstract Multidecadal variations in the global land monsoon were observed during the twentieth century, with an overall increasing trend from 1901 to 1955 that was followed by a decreasing trend up to 1990, but the mechanisms governing the above changes remain inconclusive. Based on the outputs of two atmospheric general circulation models (AGCMs) forced by historical sea surface temperature (SST) covering the twentieth century, supplemented with AGCM simulations forced by idealized SST anomalies representing different conditions of the North Atlantic and tropical Pacific, evidence shows that the observed changes can be partly reproduced, particularly over the Northern Hemisphere summer monsoon (NHSM) domain, demonstrating the modulation of decadal SST changes on the long-term variations in monsoon precipitation. Moisture budget analysis is performed to understand the interdecadal changes in monsoon precipitation, and the dynamic term associated with atmospheric circulation changes is found to be prominent, while the contribution of the thermodynamic term associated with humidity changes can lead to coincident wetting over the NHSM domain. The increase (decrease) in NHSM land precipitation during 1901–55 (1956–90) is associated with the strengthening (weakening) of NHSM circulation and Walker circulation. The multidecadal scale changes in atmospheric circulation are driven by SST anomalies over the North Atlantic and the Pacific. A warmer North Atlantic together with a colder eastern tropical Pacific and a warmer western subtropical Pacific can lead to a strengthened meridional gradient in mid-to-upper-tropospheric thickness and strengthened trade winds, which transport more water vapor into monsoon regions, leading to an increase in monsoon precipitation.


2012 ◽  
Vol 25 (8) ◽  
pp. 2995-3009 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held

Abstract A tropical cyclone–permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%–86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%). Several atmospheric parameters are utilized to probe changes in tropical atmospheric circulation and thermodynamical properties relevant to storm genesis in the model. While all present strong correlation to storm response in some basins, a parameter-measuring tropospheric convective mass flux stands out as skillful in explaining the simulated differences for all basins. Globally, in addition to a modest reduction of total storm frequency, the simulations exhibit a small, but robust eastward and poleward migration of genesis frequency in both the North Pacific and the North Atlantic Oceans. This eastward migration of storms can also be explained by changes in convection.


2012 ◽  
Vol 8 (2) ◽  
pp. 637-651 ◽  
Author(s):  
B. J. Dermody ◽  
H. J. de Boer ◽  
M. F. P. Bierkens ◽  
S. L. Weber ◽  
M. J. Wassen ◽  
...  

Abstract. We present a reconstruction of the change in climatic humidity around the Mediterranean between 3000–1000 yr BP. Using a range of proxy archives and model simulations we demonstrate that climate during this period was typified by a millennial-scale seesaw in climatic humidity between Spain and Israel on one side and the Central Mediterranean and Turkey on the other, similar to precipitation anomalies associated with the East Atlantic/West Russia pattern in current climate. We find that changes in the position and intensity of the jet stream indicated by our analysis correlate with millennial changes in North Atlantic sea surface temperature. A model simulation indicates the proxies of climatic humidity used in our analysis were unlikely to be influenced by climatic aridification caused by deforestation during the Roman Period. That finding is supported by an analysis of the distribution of archaeological sites in the Eastern Mediterranean which exhibits no evidence that human habitation distribution changed since ancient times as a result of climatic aridification. Therefore we conclude that changes in climatic humidity over the Mediterranean during the Roman Period were primarily caused by a modification of the jet stream linked to sea surface temperature change in the North Atlantic. Based on our findings, we propose that ocean-atmosphere coupling may have contributed to regulating Atlantic Meridional Overturning Circulation intensity during the period of analysis.


2020 ◽  
Author(s):  
Hejing Wang ◽  
Dehai Luo

<p>In our study, we aim to examine what factors lead to the summer heat waves over Eurasia and their variability. The analysis reveals that the summer heat waves over Eurasia show two kinds of spatial patterns: midlatitude and high latitude types. The mid-latitude heat wave mainly occurred over west Russia in the west of 55°E and in the south of 60°N, whereas the high-latitude type mainly occurred over west Russia in the east of 55°E and in the north of 55°N. We further analyzed the relationship of the two kinds of heat waves with atmospheric circulation patterns in the Atlantic-Eurasian sector and sea surface temperature (SST) anomalies over the North Atlantic and Arctic. The results show that the cold or warm SST anomalies over Barents-Kara Seas (BKS) can significantly influence the latitude and longitude of Russian heat waves, while the heat waves are also related to the latitude of positive SST anomalies over North Atlantic.</p><p>A mid-latitude wave train propagating into Eurasia and mid-latitude Russian heat waves, which are related to the positive phase of the North Atlantic Oscillation (NAO), are seen when there are strong SST warming in the North Atlantic mid-high latitudes south of 60°N and SST cooling over BKS. In contrast, a high-latitude Russian heat wave can occur over west Russia when there are positive SST anomalies over Baffin Bay, Davis Strait and Labrador Sea north of 60°N and BKS, while this high-latitude wave train is related to the decay of Greenland blocking or the negative NAO phase via high-latitude wave train propagation.</p>


2014 ◽  
Vol 28 (1) ◽  
pp. 306-323 ◽  
Author(s):  
Bolan Gan ◽  
Lixin Wu

Abstract In this study, the lagged maximum covariance analysis is performed on winter storm-track anomalies, represented by the meridional heat flux by synoptic-scale (2–8 days) transient eddies and sea surface temperature (SST) anomalies in the North Atlantic, which are both derived from reanalysis datasets spanning the twentieth century. The analysis shows significant seasonal and interannual coupling between storm-track and SST variations. On seasonal time scales, it is found that SST anomalies in the preceding early winter (November–December), which are expected to change the lower-tropospheric baroclinicity, can significantly influence storm tracks in early spring (March); that is, an intensification and slight northward shift of storm tracks in response to a midlatitude SST dipole, with a cold pole centered to the southeast of Newfoundland and a warm pole in the western subtropical Atlantic. This storm-track response pattern is similar to the storm-track forcing pattern in early spring, which resembles the dominant mode of storm tracks. At interannual time scales, it is found that the wintertime (January–March) storm-track and SST anomalies are mutually reinforced, manifesting as a zonal-dipole-like pattern in storm-track anomalies (with dominant negative anomalies in the downstream) coupled with a midlatitude SST monopole (with warm anomalies centered to the south and east of Newfoundland).


Ocean Science ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1509-1527
Author(s):  
Yujie Jing ◽  
Yangchun Li ◽  
Yongfu Xu

Abstract. This study evaluates the response of winter-average sea surface temperature (SST) to the winter North Atlantic Oscillation (NAO) simulated by 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth system models in the North Atlantic (NA) (0–65∘ N) on an interannual scale. Most of the models can reproduce an observed tripolar pattern of the response of the SST anomalies to the NAO on an interannual scale. The model bias is mainly reflected in the locations of the negative-response centers in the subpolar NA (45–65∘ N), which is mainly caused by the bias of the response of the SST anomalies to the NAO-driven turbulent heat flux (THF) anomalies. Although the influence of the sensible heat flux (SHF) on the SST is similar to that of the latent heat flux (LHF), it seems that the SHF may play a larger role in the response of the SST to the NAO, and the weak negative response of the SST anomalies to the NAO-driven LHF anomalies is mainly caused by the overestimated oceanic role in the interaction of the LHF and SST. Besides the THF, some other factors which may impact the relationship of the NAO and SST are discussed. The relationship of the NAO and SST is basically not affected by the heat meridional advection transports on an interannual timescale, but it may be influenced by the cutoffs of data filtering, the initial fields, and external-forcing data in some individual models, and in the tropical NA it can also be affected by the different definitions of the NAO indices.


2003 ◽  
Vol 16 (9) ◽  
pp. 1364-1377 ◽  
Author(s):  
Gaëlle de Coëtlogon ◽  
Claude Frankignoul

Abstract The impact of the seasonal variations of the mixed-layer depth on the persistence of sea surface temperature (SST) anomalies is studied in the North Atlantic, using observations. A significant recurrence of winter SST anomalies during the following winter occurs in most of the basin, but not in the subtropical area of strong subduction. When taking reemergence into account, the e-folding timescale of winter SST anomalies generally exceeds 1 yr, and is about 16 months for the dominant SST anomaly tripole. The influence of advection by the mean oceanic currents is investigated by allowing for a displacement of the maximum recurrent correlation and, alternatively, by considering the SST anomaly evolution along realistic mean displacement paths. Taking into account the nonlocality of the reemergence generally increases the wintertime persistence, most notably in the northern part of the domain. The passive response of the mixed layer to the atmospheric forcing thus has a red spectrum down to near-decadal frequencies.


2021 ◽  
Author(s):  
Alvise Aranyossy ◽  
Sebastian Brune ◽  
Lara Hellmich ◽  
Johanna Baehr

<p>We analyse the connections between the wintertime North Atlantic Oscillation (NAO), the eddy-driven jet stream with the mid-latitude cyclonic activity over the North Atlantic and Europe. We investigate, through the comparison against ECMWF ERA5 and hindcast simulations from the Max Planck Institute Earth System Model (MPI-ESM), the potential for enhancement of the seasonal prediction skill of the Eddy Kinetic Energy (EKE) by accounting for the connections between large-scale climate and the regional cyclonic activity. Our analysis focuses on the wintertime months (December-March) in the 1979-2019 period, with seasonal predictions initialized every November 1st. We calculate EKE from wind speeds at 250 hPa, which we use as a proxy for cyclonic activity. The zonal and meridional wind speeds are bandpass filtered with a cut-off at 3-10 days to fit with the average lifespan of mid-latitude cyclones. </p><p>Preliminary results suggest that in ERA5, major positive anomalies in EKE, both in quantity and duration, are correlated with a northern position of the jet stream and a positive phase of the NAO. Apparently, a deepened Icelandic low-pressure system offers favourable conditions for mid-latitude cyclones in terms of growth and average lifespan. In contrast, negative anomalies in EKE over the North Atlantic and Central Europe are associated with a more equatorward jet stream, these are also linked to a negative phase of the NAO.  Thus, in ERA5, the eddy-driven jet stream and the NAO play a significant role in the spatial and temporal distribution of wintertime mid-latitude cyclonic activity over the North Atlantic and Europe. We extend this connection to the MPI-ESM hindcast simulations and present an analysis of their predictive skill of EKE for wintertime months.</p>


Sign in / Sign up

Export Citation Format

Share Document