The effect of repeated sand nourishments on long-term nearshore evolution: a case study for Noordwijk aan Zee, the Netherlands

Author(s):  
Nienke Vermeer ◽  
Gerben Ruessink ◽  
Timothy Price

<p>Sand nourishments are carried out along numerous sandy coasts worldwide to counteract coastal erosion, with the sand added to the inter- and supratidal beach or to the subtidal nearshore profile. Since the early 1990s beach and shoreface nourishments have been carried out along the Dutch coast, with a total nourished volume of 10 to 15 Mm<sup>3</sup>/year. Although we have a reasonable understanding of how an individual nourishment temporarily affects the evolution of nearshore morphology, it is not clear how repeated nourishments influence the long-term dynamics of the nearshore zone. This understanding is crucial, not only for the safety of beachgoers or marine life, but especially in view of the expected increase in the number of nourishments and total nourishment volume given expected accelerating sea-level rise in the decades to come.</p><p>This contribution aims to analyse how repeated nourishments affect the long-term evolution of the shoreline and the two subtidal sandbars at the Dutch beach town Noordwijk aan Zee using Argus video imagery available since 1995. Between 1998 and 2014 four shoreface and three beach nourishments were carried out at the study site. The low-tide time-exposure images of the Argus station were used to determine  sandbar and shoreline position along a 6-km stretch of coast.<br>The results show that prior to the first nourishment the sandbars migrated seaward slowly but persistently. The repeated nourishments permanently decreased this seaward directed migration rate of the sandbars to only a few m/year. The sandbars showed alternating periods of seasonal to multi-year onshore and offshore migration superimposed on this very weak decadal offshore trend. Furthermore, the various sand nourishments gave rise to forked shoreline-sandbar morphology. This large-scale alongshore variability was undone within 1 – 2 years by switches, in which the landward part of a sandbar or the shoreline on one side of the fork realigned with the seaward part of a bar on the other side. These switches appear to be a direct consequence of the repeated nourishments. For example, the 2013-2014 sequence of a beach and a shoreface nourishment resulted in 4 bar switches within the subsequent 2 years, compared to a total of 12 switches in the total dataset of 24.8 years. Further analysis will focus on the effect of repeated nourishments on the temporal and spatial persistence of rip-channel morphology and on the wave conditions that caused the forked morphology to switch.</p>

2011 ◽  
Vol 1 (32) ◽  
pp. 89 ◽  
Author(s):  
Mohamed A Dabees ◽  
Brett D Moore

This paper describes numerical modeling of long-term evolution of inlet systems in southwest and central Florida. The paper discusses a general methodology developed following four case studies and application to the case study of Gordon Pass in southwest Florida. The case study of Gordon Pass demonstrates the importance of considering large temporal and spatial scales in evaluating morphologic response to inlet management practices. The results describe the evolution of Gordon Pass from 1930 to present. The analysis begins with natural conditions that existed before dredging or inlet modifications and investigates how inlet evolution can be influenced by navigation improvements and provide tools to evaluate alternatives.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Christopher Gradwohl ◽  
Vesna Dimitrievska ◽  
Federico Pittino ◽  
Wolfgang Muehleisen ◽  
András Montvay ◽  
...  

Photovoltaic (PV) technology allows large-scale investments in a renewable power-generating system at a competitive levelized cost of electricity (LCOE) and with a low environmental impact. Large-scale PV installations operate in a highly competitive market environment where even small performance losses have a high impact on profit margins. Therefore, operation at maximum performance is the key for long-term profitability. This can be achieved by advanced performance monitoring and instant or gradual failure detection methodologies. We present in this paper a combined approach on model-based fault detection by means of physical and statistical models and failure diagnosis based on physics of failure. Both approaches contribute to optimized PV plant operation and maintenance based on typically available supervisory control and data acquisition (SCADA) data. The failure detection and diagnosis capabilities were demonstrated in a case study based on six years of SCADA data from a PV plant in Slovenia. In this case study, underperforming values of the inverters of the PV plant were reliably detected and possible root causes were identified. Our work has led us to conclude that the combined approach can contribute to an efficient and long-term operation of photovoltaic power plants with a maximum energy yield and can be applied to the monitoring of photovoltaic plants.


Author(s):  
Arndt Wiessner ◽  
Jochen A. Müller ◽  
Peter Kuschk ◽  
Uwe Kappelmeyer ◽  
Matthias Kästner ◽  
...  

The large scale of the contamination by the former carbo-chemical industry in Germany requires new and often interdisciplinary approaches for performing an economically sustainable remediation. For example, a highly toxic and dark-colored phenolic wastewater from a lignite pyrolysis factory was filled into a former open-cast pit, forming a large wastewater disposal pond. This caused an extensive environmental pollution, calling for an ecologically and economically acceptable strategy for remediation. Laboratory-scale investigations and pilot-scale tests were carried out. The result was the development of a strategy for an implementation of full-scale enhanced in situ natural attenuation on the basis of separate habitats in a meromictic pond. Long-term monitoring of the chemical and biological dynamics of the pond demonstrates the metamorphosis of a former highly polluted industrial waste deposition into a nature-integrated ecosystem with reduced danger for the environment, and confirmed the strategy for the chosen remediation management.


Nova Economia ◽  
2020 ◽  
Vol 30 (spe) ◽  
pp. 1225-1256
Author(s):  
Fernanda Cimini ◽  
Jorge Britto ◽  
Leonardo Costa Ribeiro

Abstract Our intent is to reinterpret the concept of middle-income trap using the language of the complex system approach to refer to the unpredictability, non-linearity and the enormous range of possible behaviors of economic development in the long-term time series. By redefining the concept of trap in those terms, we propose to shed light on the institutional background of economic development. In order to advance our argument, we conduct a case study of Latin America, a region that has presented an unstable and non-linear economic trajectory across the 20th century. We argue that the combination between the colonial economic legacy and the political fragmentation amid the process of independence shaped the socio-economic structure and institutional capabilities for years to come, restricting the possibilities of overcoming underdevelopment.


2005 ◽  
Vol 01 (03) ◽  
pp. 359-369
Author(s):  
IAN FENTY ◽  
ERIC BONABEAU ◽  
JUERGEN BRANKE

In this paper, co-evolution is used to examine the long-term evolution of business models in an industry. Two types of co-evolution are used: synchronous, whereby the entire population of business models is replaced with a new population at each generation, and asynchronous, whereby only one individual is replaced.


2021 ◽  
Author(s):  
Taha Sezer ◽  
Abubakar Kawuwa Sani ◽  
Rao Martand Singh ◽  
David P. Boon

<p>Groundwater heat pumps (GWHP) are an environmentally friendly and highly efficient low carbon heating technology that can benefit from low-temperature groundwater sources lying in the shallow depths to provide heating and cooling to buildings. However, the utilisation of groundwater for heating and cooling, especially in large scale (district level), can create a thermal plume around injection wells. If a plume reaches the production well this may result in a decrease in the system performance or even failure in the long-term operation. This research aims to investigate the impact of GWHP usage in district-level heating by using a numerical approach and considering a GWHP system being constructed in Colchester, UK as a case study, which will be the largest GWHP system in the UK. Transient 3D simulations have been performed pre-construction to investigate the long-term effect of injecting water at 5°C, into a chalk bedrock aquifer. Modelling suggests a thermal plume develops but does not reach the production wells after 10 years of operation. The model result can be attributed to the low hydraulic gradient, assumed lack of interconnecting fractures, and large (>500m) spacing between the production and injection wells. Model validation may be possible after a period operational monitoring.</p>


2016 ◽  
Vol 13 (24) ◽  
pp. 6651-6667 ◽  
Author(s):  
Jing Tang ◽  
Guy Schurgers ◽  
Hanna Valolahti ◽  
Patrick Faubert ◽  
Päivi Tiiva ◽  
...  

Abstract. The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999–2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m−2 yr−1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day–year scale, the WRs are a combined effect of plant functional type (PFT) dynamics and instantaneous BVOC responses to warming. The identified challenges in estimating Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future.


Sign in / Sign up

Export Citation Format

Share Document