From moderate earthquakes to continuous aseismic slip, a variety of ways to release strain along the Chaman fault (Pakistan, Afghanistan). 

Author(s):  
Manon Dalaison ◽  
Romain Jolivet ◽  
Elenora van Rijsingenn

<p>Surface fault slip can be continuously monitored at fine spatial resolution from space using InSAR. Based on 5 years of observations (2014-2019), we describe and interpret the InSAR time series of deformation around the Chaman fault, a major strike-slip fault along the boundary between the Indian and Eurasian plates. Aseismic slip was observed on two >100 km long segments, reaching a maximum of 1 cm/yr. In between, a fault segment delimited by a restraining and releasing bend in the fault trace hosted three M<sub>b</sub> 4.2, M<sub>w</sub> 5.1 and M<sub>w</sub> 5.6 earthquakes in our observation period. These earthquakes were followed by significant postseismic slip with characteristic duration between 1.5 to 3 years. Postseismic to coseismic surface slip ratios reach at least 0.6-1.2. In addition, aseismic slip was observed in close spatio-temporal relationship with those earthquakes. Finally, we argue that we detect numerous micro-slip events of M<sub>w</sub><3, although with large uncertainty. We provide an extensive description of the various modes of slip along this plate boundary fault and discuss the mechanical implications of such entangled behavior.<span> </span></p>

2020 ◽  
Author(s):  
Ingi Th. Bjarnason ◽  
Revathy M. Parameswaran ◽  
Bergthóra S. Thorbjarnardóttir

<p>Western South Iceland Seismic Zone (SISZ) plate boundary lies adjacent to the Hengill central volcano. The sinistral SISZ connects the two arms of the divergent Mid-Atlantic Ridge (MAR) plate boundaries (Western and Eastern Volcanic Zones; WVZ, EVZ), while Hengill is a part of the WVZ. Seismicity in western SISZ, also known as the Hjalli-Ölfus region, closely interacts with the seismicity and magmatism in Hengill. For instance, the  4 June 1998 Mw 5.4 Hengill earthquake witnessed aftershocks that extended south to meet the Hjalli-Ölfus segment. This segment then hosted the Mw 5.1 Hjalli-Ölfus earthquake that occurred on 13 November 1998; elucidating the Hengill-Ölfus interaction. Relative relocations of earthquakes from July 1991 to December 1999 in Hjalli-Ölfus indicate that the seismogenic zone is predominant at 4-8 km depth, with 80% of the events occuring along an ~ENE-WSW trending seismic zone with lateral extension of ~12 km. The remaining occur along N-S faults, much like the observed norm of dextral faulting along the rest of the SISZ (e.g., 17 June 2000, 29 May 2008 earthquakes; Árnadottir et al., 2001; Brandsdottir et al., 2010). These relocated earthquake sequences were used to perform stress inversions within specified spatio-temporal grids. The results show that from 1994 to 1997, the western part of the Hjalli-Ölfus region exhibits an oblique normal stress regime, while the eastern part remains consistently strike-slip in nature. From mid-1997 to June 1998 western Hjalli-Ölfus shifts from an oblique normal to a strike-slip stress regime, while the eastern part maintains the strike-slip character of the SISZ. However, two months after the 4 June 1998 Hengill earthquake, the western part shifts back to an oblique normal regime, which loses a part of its normal-faulting tendency after the 13 November 1998 Hjalli-Ölfus earthquake. This variation in stress fields between two significant events on conjugately oriented prodominantly strike-slip faults is a clear example of these features influencing one another between seismic episodes. </p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Toshihiro Igarashi ◽  
Aitaro Kato

AbstractSimilar earthquakes that occur in approximately the same location have the potential to reveal the spatio-temporal changes in aseismic slip along plate boundaries. Here we identify similar earthquakes with moderate magnitudes that occurred worldwide between 1989 and 2016 by using seismograms recorded by the Japanese dense seismic network. The slip rate along the plate boundaries estimated from similar earthquakes increased rapidly following M > 8 megathrust ruptures and then gradually decayed over periods of ~10 years, which correlates with after-slip progressing around the source areas. More than 30 years after large megathrust earthquakes, the slip rate begins to show a gradual increase. This gradual increase in slip rate after the decay may be due to an increase in stress levels that accumulate during tectonic loading. The spatio-temporal characteristics of inter-plate aseismic slip can be used to provide a valuable framework for understanding the long-term evolution of slip-rate during megathrust earthquake cycles.


2005 ◽  
Vol 42 (6) ◽  
pp. 1223-1237 ◽  
Author(s):  
David B Snyder ◽  
Brian J Roberts ◽  
Steven P Gordey

The Lithoprobe Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) profiles crossed three major tectonic zones of the northwestern Canadian Shield and northern Canadian Cordillera that are diverse in age and in depth of penetration. The oldest (2630–2590 Ma), the Yellowknife River fault zone, formed as a strike-slip fault in a tensional strain regime. Reflector attenuation or truncations align vertically beneath the fault trace through much of the crust, implying a near-vertical fault plane. The youngest (60–10 Ma), the Tintina fault zone, produced cumulative dextral strike-slip displacements of 425 km, perhaps 800 km. Tomographic velocity and ray-trace models of reflection data indicate that several fault splays form a tectonic zone 30 km wide at the surface, but truncations of deeper crustal reflections suggest that the zone thins in the mid-crust and widens near the Moho. This apparent variable width versus depth of the Tintina fault is atypical of major strike-slip faults worldwide. The Teslin fault was an active terrane boundary during accretion of terranes onto North America. Observed reflection geometries indicate that the juxtapositions of highly contrasting metamorphic grades across the Teslin fault are confined to the upper crust along SNORCLE line 3, implying that the fault soles eastward into a mid-crustal detachment at the interpreted top of North American crust. The limited depth extent of the Teslin fault zone is similar to some models of the San Andreas fault and may result from their similar histories as convergent margin structures.


Geology ◽  
2000 ◽  
Vol 28 (4) ◽  
pp. 355 ◽  
Author(s):  
Nina Kukowski ◽  
Thies Schillhorn ◽  
Ernst R. Flueh ◽  
Katrin Huhn

2021 ◽  
Author(s):  
Emmanuel Skourtsos ◽  
Haralambos Kranis ◽  
Spyridon Mavroulis ◽  
Efthimios Lekkas

<p>The NNE-SSW, right-lateral Kefalonia Transform Fault (KTF) marks the western termination of the subducting Hellenic slab, which is a part of the oceanic remnant of the African plate. The inception of the KTF, described as a STEP fault, is placed in the Pliocene. KTF is considered to be the most active earthquake source in the Eastern Mediterranean. During the last two decades, four significant earthquakes (M>6.0) have been associated with the KTF. These events are attributed to the reactivation of different segments of the KTF, which are (from North to South) the North Lefkada, South Lefkada, Fiskardo, Paliki and Zakynthos segments: the North Lefkada segment ruptured in the 2003 earthquake, the 2014 Kefalonia events are associated with the Paliki segment and the 2015 Lefkada earthquake with the South Lefkada (and possibly the Fiskardo) segments.</p><p>The upper plate structure in the islands of Lefkada and Kefalonia is characterized by the Ionian Unit, thrusted over the Paxi (or Pre-Apulian) Unit. The Ionian Thrust, which brings the Ionian over the Paxi Unit, is a main upper-plate NNW-SSE, NE-dipping structure. It runs through the island of Lefkada, to be mapped onshore again at the western coast of Ithaki and at SE Kefalonia. Two other major thrusts are mapped on this island: the Aenos thrust, which has a WNW-ESE strike at the southern part of the island and gradually curves towards NNW-SSE in the west and the Kalo Fault in the northern part. These Pliocene (and still active) structures developed during the late-most stages of thrusting in the Hellenides, strike obliquely to the KTF and appear to abut against it.</p><p>We suggest that these thrusts control not only the deformation within the upper plate, but also the earthquake segmentation of the KTF. This suggestion is corroborated by the spatio-temporal distribution and source parameters of the recent, well-documented earthquake events and by the macroseismic effects of these earthquakes. The abutment of the Ionian thrust against the KTF marks the southern termination of the Lefkada earthquake segment, which ruptured in the 2003 earthquake, while the Aenos, (or the Kalo) thrust mark the southern end of the Fiskardo segment. The spatial distribution of the Earthquake Environmental Effects related to the four significant events in the last 20 years displays a good correlation with our interpretation: most of the 2003 macroseismic effects are located in the northern part of Lefkada, which belongs to the upper block of the Ionian thrust; similarly, the effects of the 2014 earthquakes of Kefalonia are distributed mainly in the Paliki Peninsula and the southern part of the island that belong to the footwall of the Aenos thrust and the 2015 effects are found in SW Lefkada, which is part of the footwall of the Ionian thrust.</p><p>We suggest that correlation between upper-plate structure and plate boundary faulting can provide insights in the understanding of faulting pattern in convergent settings, therefore contributing to earthquake management plans.</p>


1994 ◽  
Vol 84 (6) ◽  
pp. 1940-1959 ◽  
Author(s):  
Steven G. Wesnousky

Abstract Paleoearthquake and fault slip-rate data are combined with the CIT-USGS catalog for the period 1944 to 1992 to examine the shape of the magnitude-frequency distribution along the major strike-slip faults of southern California. The resulting distributions for the Newport-Inglewood, Elsinore, Garlock, and San Andreas faults are in accord with the characteristic earthquake model of fault behavior. The distribution observed along the San Jacinto fault satisfies the Gutenberg-Richter relationship. If attention is limited to segments of the San Jacinto that are marked by the rupture zones of large historical earthquakes or distinct steps in fault trace, the observed distribution along each segment is consistent with the characteristic earthquake model. The Gutenberg-Richter distribution observed for the entirety of the San Jacinto may reflect the sum of seismicity along a number of distinct fault segments, each of which displays a characteristic earthquake distribution. The limited period of instrumental recording is insufficient to disprove the hypothesis that all faults will display a Gutenberg-Richter distribution when averaged over the course of a complete earthquake cycle. But, given that (1) the last 5 decades of seismicity are the best indicators of the expected level of small to moderate-size earthquakes in the next 50 years, and (2) it is generally about this period of time that is of interest in seismic hazard and engineering analysis, the answer to the question posed in the title of the article, at least when concerned with practical implementation of seismic hazard analysis at sites along these major faults, appears to be the “characteristic earthquake distribution.”


Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1211-1239 ◽  
Author(s):  
Thomas van der Werf ◽  
Vasileios Chatzaras ◽  
Leo Marcel Kriegsman ◽  
Andreas Kronenberg ◽  
Basil Tikoff ◽  
...  

Abstract. The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene–Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750–890 °C and pressures of 400–560 MPa, corresponding to 15–22 km depth. A hot crustal geotherm of 40 ° C km−1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12–33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12–17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1–1.3×1020 Pa ⋅ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016–1019 Pa ⋅ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ⋅ s, which indicates the lack of an upper-mantle lid beneath northern Baja California. Our data show that during post-seismic transients, the upper mantle and the lower crust in the Pacific–Baja California plate boundary are characterized by similar and low differential stress. Transient viscosity of the lower crust is similar to the viscosity of the upper mantle.


Sign in / Sign up

Export Citation Format

Share Document