scholarly journals Recrystallization of ice enhances the creep and vulnerability to fracture of ice shelves 

Author(s):  
Meghana Ranganathan ◽  
Brent Minchew ◽  
Colin Meyer ◽  
Matej Pec

<p>The initiation and propagation of fractures in floating regions of Antarctica has the potential to destabilize large regions of the ice sheet, leading to significant sea-level rise. While observations have shown rapid, localized deformation and damage in the margins of fast-flowing glaciers, there remain gaps in our understanding of how rapid deformation affects the creep and toughness of ice. Here we derive a model for dynamic recrystallization in ice and other rocks that includes a novel representation of migration recrystallization, which is absent from existing models but is likely to be dominant in warm areas undergoing rapid deformation within the ice sheet. We show that, in regions of elevated strain rate, grain sizes in ice may be larger than expected (~15 mm) due to migration recrystallization, a significant deviation from solid earth studies which find fine-grained rock in shear zones. This may imply that ice in shear margins deforms primarily by dislocation creep, suggesting a flow-law exponent of n=4 in these regions. Further, we find from existing models that this increase in grain size results in a decrease in tensile strength of ice by ~75% in the margins of glaciers. Thus, we expect that this increase in grain size makes the margins of fast-flowing glaciers less viscous and more vulnerable to fracture than we may suppose from standard model parameters.</p>

2017 ◽  
Vol 63 (240) ◽  
pp. 731-744 ◽  
Author(s):  
JORGE BERNALES ◽  
IRINA ROGOZHINA ◽  
MAIK THOMAS

ABSTRACTIce-shelf basal melting is the largest contributor to the negative mass balance of the Antarctic ice sheet. However, current implementations of ice/ocean interactions in ice-sheet models disagree with the distribution of sub-shelf melt and freezing rates revealed by recent observational studies. Here we present a novel combination of a continental-scale ice flow model and a calibration technique to derive the spatial distribution of basal melting and freezing rates for the whole Antarctic ice-shelf system. The modelled ice-sheet equilibrium state is evaluated against topographic and velocity observations. Our high-resolution (10-km spacing) simulation predicts an equilibrium ice-shelf basal mass balance of −1648.7 Gt a−1 that increases to −1917.0 Gt a−1 when the observed ice-shelf thinning rates are taken into account. Our estimates reproduce the complexity of the basal mass balance of Antarctic ice shelves, providing a reference for parameterisations of sub-shelf ocean/ice interactions in continental ice-sheet models. We perform a sensitivity analysis to assess the effects of variations in the model set-up, showing that the retrieved estimates of basal melting and freezing rates are largely insensitive to changes in the internal model parameters, but respond strongly to a reduction of model resolution and the uncertainty in the input datasets.


Author(s):  
Sunal Ahmet Parasiz ◽  
Reid VanBenthysen ◽  
Brad L. Kinsey

Sheet metal forming often consists of bending processes in which gradients of deformation exists through the thickness of the workpiece in a localized deformation area. In microscale bending, these deformation gradients become much steeper, as the changes in the deformation occur over short distances (in the order of micrometers). In addition, with miniaturization, the number of grains that are present through the thickness decreases significantly. In this research, the effect of grain size and specimen size on the deformation distribution through the thickness of microbent sheet specimens was investigated via microhardness evaluations. It was found that the deformation distribution, i.e., hardness profile, is not affected significantly by the grain size when the sheet thickness is large (for 1.625 mm specimens) or by miniaturization of the specimen size when the grain size is fine. However, the deformation distribution of the coarse grained specimens deviates from the fine grained ones and from the 1.625 mm thick sheet specimens when the specimen size is miniaturized.


2018 ◽  
Author(s):  
Alberto Ceccato ◽  
Luca Menegon ◽  
Giorgio Pennacchioni ◽  
Luiz Fernando Grafulha Morales

Abstract. At mid-crustal conditions, deformation of feldspar is mainly accomplished by a combination of fracturing, dissolution/precipitation and reaction-weakening mechanisms. In particular, K-feldspar is reaction-weakened by formation of strain-induced myrmekite – a fine-grained symplectite of plagioclase and quartz. Here we investigate with EBSD the microstructure of a granodiorite mylonite, developed at 420–460 °C during cooling of the Rieserferner pluton (Eastern Alps), to assess the microstructural processes and the role of weakening associated with myrmekite development. Our analysis shows that the crystallographic orientation of the plagioclase of pristine myrmekite was controlled by that of the replaced K-feldspar. Myrmekite nucleation resulted in both grain size reduction and ordered phase mixing by heterogeneous nucleation of quartz and plagioclase. The fine grain size of sheared myrmekite promoted grain size-sensitive creep mechanisms including fluid-assisted grain boundary sliding in plagioclase, coupled with heterogeneous nucleation of quartz within creep cavitation pores. Flow laws calculated for monomineralic quartz, feldspar, and quartz + plagioclase aggregates (sheared myrmekite), show that during mylonitization at 450 °C, grain-size-sensitive creep in sheared myrmekite accommodated strain rates several orders of magnitude higher than monomineralic quartz layers deforming by dislocation creep. Therefore, diffusion creep and grain size-sensitive processes contributed significantly to bulk rock weakening during mylonitization. Our results have implications for modelling the rheology of the mid-upper continental (felsic) crust.


2000 ◽  
Vol 67 (4) ◽  
pp. 645-654 ◽  
Author(s):  
S. Kyriakides ◽  
J. E. Miller

The initiation and propagation of Lu¨ders-type localized deformation in thin, fine grained steel strips in tension is studied through combined experimental and analytical efforts. Purely elastic deformation is terminated (upper yield stress) by localized deformation which tends to initiate along preferred directions. The strain level associated with this material instability is limited to two to five percent. When this strain level is achieved locally, the instability propagates via inclined fronts which separate coexisting regions of essentially elastic and plastically deformed materials. Under displacement controlled stretching, one or two fronts propagate in a steady-state manner (lower yield stress). The propagation of one and two fronts are simulated numerically using finite element models in which the material is modeled as a finitely deforming elastoplastic solid with an up-down-up nominal stress-strain response. The simulations capture the major events observed in the experiments such as the initiation process, the propagation of inclined fronts, kinking of the strip and the build up of moments, and the periodic straightening and moment reduction through transient events. This confirms that structural effects play a major role in the evolution of observed events. [S0021-8936(00)01604-4]


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2141-2167
Author(s):  
Nicolas Mansard ◽  
Holger Stünitz ◽  
Hugues Raimbourg ◽  
Jacques Précigout ◽  
Alexis Plunder ◽  
...  

Abstract. Syn-kinematic mineral reactions play an important role for the mechanical properties of polymineralic rocks. Mineral reactions (i.e., nucleation of new phases) may lead to grain size reduction, producing fine-grained polymineralic mixtures, which have a strongly reduced viscosity because of the activation of grain-size-sensitive deformation processes. In order to study the effect of deformation–reaction feedback(s) on sample strength, we performed rock deformation experiments on “wet” assemblages of mafic compositions in a Griggs-type solid-medium deformation apparatus. Shear strain was applied at constant strain rate (10−5 s−1) and constant confining pressure (1 GPa) with temperatures ranging from 800 to 900 ∘C. At low shear strain, the assemblages that react faster are significantly weaker than the ones that react more slowly, demonstrating that reaction progress has a first-order control on rock strength. With increasing strain, we document two contrasting microstructural scenarios: (1) the development of a single throughgoing high-strain zone of well-mixed, fine-grained aggregates, associated with a significant weakening after peak stress, and (2) the development of partially connected, nearly monomineralic shear bands without major weakening. The lack of weakening is caused by the absence of interconnected well-mixed aggregates of fine-grained reaction products. The nature of the reaction products, and hence the intensity of the mechanical weakening, is controlled by the microstructures of the reaction products to a large extent, e.g., the amount of amphibole and the phase distribution of reaction products. The samples with the largest amount of amphibole exhibit a larger grain size and show less weakening. In addition to their implications for the deformation of natural shear zones, our findings demonstrate that the feedback between deformation and mineral reactions can lead to large differences in mechanical strength, even at relatively small initial differences in mineral composition.


2013 ◽  
Vol 9 (5) ◽  
pp. 5123-5156 ◽  
Author(s):  
D. Sprenk ◽  
M. E. Weber ◽  
G. Kuhn ◽  
V. Wennrich ◽  
T. Hartmann ◽  
...  

Abstract. The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottom-water production today. However, little is known about bottom-water production under different climate and ice-sheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium to coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, chemical elements, Fe, Ti, Rb, and K are elevated as well. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of glacially enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. If this is correct, silty layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom water formation and increased sediment transport. Vice versa, finer-grained clayey layers were then deposited during summer, when coastal polynya activity was likely reduced.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1036
Author(s):  
Jolien Linckens ◽  
Sören Tholen

Deformation in the upper mantle is localized in shear zones. In order to localize strain, weakening has to occur, which can be achieved by a reduction in grain size. In order for grains to remain small and preserve shear zones, phases have to mix. Phase mixing leads to dragging or pinning of grain boundaries which slows down or halts grain growth. Multiple phase mixing processes have been suggested to be important during shear zone evolution. The importance of a phase mixing process depends on the geodynamic setting. This study presents detailed microstructural analysis of spinel bearing shear zones from the Erro-Tobbio peridotite (Italy) that formed during pre-alpine rifting. The first stage of deformation occurred under melt-free conditions, during which clinopyroxene and olivine porphyroclasts dynamically recrystallized. With ongoing extension, silica-undersaturated melt percolated through the shear zones and reacted with the clinopyroxene neoblasts, forming olivine–clinopyroxene layers. Furthermore, the melt reacted with orthopyroxene porphyroclasts, forming fine-grained polymineralic layers (ultramylonites) adjacent to the porphyroclasts. Strain rates in these layers are estimated to be about an order of magnitude faster than within the olivine-rich matrix. This study demonstrates the importance of melt-rock reactions for grain size reduction, phase mixing and strain localization in these shear zones.


2020 ◽  
Author(s):  
Jacques Précigout

<p><span>Deformation of lithospheric rocks regularly localizes into high-strain shear zones that include fine-grained ultramylonites. Occurring as quasi-straight layers of intimately mixed phases that often describe sharp transitions with the host rock, these structures may channelize fluid flow<strong><sup>[1,2]</sup></strong> and could serve as precursors for deep earthquakes<strong><sup>[3]</sup></strong>. However, although intensively documented, ultramylonites originate from still unknown processes. Here I focus on a mylonitic complex that includes numerous mantle ultramylonites in the Ronda peridotite (Spain). Among them, I was able to highlight one of their precursors that I better describe as a long and straight grain boundary, along which four-grain junctions are observed with randomly oriented grains of olivine and pyroxenes. This precursor starts from a pyroxene porphyroclast and extends to an incipient, weakly undulated ultramylonite, where intimate phase mixing arises with asymmetrical grain size distribution. While the finer grain size locates on one side, describing a sharp – but continuous – transition with the host rock, the grain size gradually increases towards the other side, giving rise to a smooth transition. All phases have a very weak lattice preferred orientation (LPO) in the ultramylonite, which strongly differs from the host rock where olivine is highly deformed with evidence of high dislocation densities and a strong LPO. Altogether, these features shed light on the origin of mantle ultramylonites that I attribute to a migrating grain boundary, the sliding of which continuously produces new grains by phase nucleation, probably at the favor of transient four-grain junctions. Nucleated grains then grow and progressively detach from the precursor as it keeps on migrating depending on the dislocation densities in the host rock. Although such an unusual grain boundary remains to be understood in terms of source mechanism, these findings provide new constraints on the appearing and development of ultramylonites.</span></p><p> </p><p>[1] Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R. M. & De Carlo, F. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature <strong>459</strong>: 974–977 (2009)</p><p>[2] Précigout, J., Prigent, C., Palasse, L. & Pochon, A. Water pumping in mantle shear zones. Nat. commun. <strong>8</strong>: 15736, https://doi.org/10.1038/ncomms15736 (2017)</p><p>[3] White, J. C. Paradoxical pseudotachylyte – Fault melt outside the seismogenic zone. J. Struct. Geol. <strong>38</strong>: 11-20 (2012)</p>


1969 ◽  
Vol 8 (53) ◽  
pp. 253-276 ◽  
Author(s):  
K. Kizaki

Attempts are made to test the relation predicted by Brace (1960) between strain-rates and the ice-fabric patterns obtained at Mawson station, east Antarctica. These orientation fabrics not only are hardly related to the prediction by Brace (1960) or Kamb (1959) but also change easily within a strain grid with 100m diagonals.Stable patterns of two- and three-maximum fabrics are confirmed. The latter is common and stable in the coarse ice at the surface of the ice sheet. It is apparent that the fabric patterns are generally related to the grain-size. The single-maximum fabric always occurs in fine-grained ice, then more maxima are formed in the course of grain growth.It appears that syntectonic-secondary recrystallization is effective in producing the orientation fabrics with two, three and multiple maxima. Also, the maxima always shift away from the pole of foliation as grain-size increases and there are several stable positions of maximum such as 0°, 17°, 23° and 30°. It is expected that further stable angles would occur with coarser crystals as found in temperate glaciers.


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1399-1419 ◽  
Author(s):  
Alberto Ceccato ◽  
Luca Menegon ◽  
Giorgio Pennacchioni ◽  
Luiz Fernando Grafulha Morales

Abstract. At mid-crustal conditions, deformation of feldspar is mainly accommodated by a combination of fracturing, dissolution–precipitation, and reaction-weakening mechanisms. In particular, K-feldspar is reaction-weakened by the formation of strain-induced myrmekite – a fine-grained symplectite of plagioclase and quartz. Here we use electron backscattered diffraction to (i) investigate the microstructure of a granodiorite mylonite, developed at  ∼ 450 °C during cooling of the Rieserferner pluton (Eastern Alps); and (ii) assess the microstructural processes and the weakening associated with myrmekite development. Our analysis shows that the crystallographic orientation of plagioclase in pristine myrmekite was controlled by that of the replaced K-feldspar. Myrmekite nucleation resulted in both grain-size reduction and anti-clustered phase mixing by heterogeneous nucleation of quartz and plagioclase. The fine grain size of sheared myrmekite promoted grain-size-sensitive creep mechanisms including fluid-assisted grain boundary sliding in plagioclase, coupled with heterogeneous nucleation of quartz within creep cavitation pores. Flow laws, calculated for monomineralic quartz, feldspar, and quartz + plagioclase aggregates (sheared myrmekite) during deformation at 450 °C, show that grain-size-sensitive creep in sheared myrmekite accommodated strain rates several orders of magnitude higher than monomineralic quartz layers deforming by dislocation creep. Therefore, diffusion creep and grain-size-sensitive processes contributed significantly to bulk rock weakening during mylonitization. Our results have implications for modelling the rheology of the felsic middle crust.


Sign in / Sign up

Export Citation Format

Share Document