Potential greenhouse gas production by organic matter decomposition in thawing subsea permafrost

Author(s):  
Birgit Wild ◽  
Natalia Shakhova ◽  
Oleg Dudarev ◽  
Alexey Ruban ◽  
Denis Kosmach ◽  
...  

<p>Subsea permafrost extends over vast areas across the East Siberian Arctic Ocean shelves and might harbor a large and vulnerable organic matter pool. Field campaigns have observed strongly elevated concentrations of CH<sub>4</sub> in seawater above subsea permafrost that might stem from microbial degradation of thawing subsea permafrost organic matter, from release of CH<sub>4</sub> stored within subsea permafrost, from shallow CH<sub>4</sub> hydrates or from deeper thermogenic/petrogenic CH<sub>4</sub> pools. We here assess the potential production of CH<sub>4</sub>, as well as CO<sub>2</sub> and N<sub>2</sub>O by organic matter degradation in subsea permafrost after thaw. To that end, we employ a set of subsea permafrost drill cores from the Buor-Khaya Bay in the south-eastern Laptev Sea where previous studies have observed a rapid deepening of the ice-bonded permafrost table. Preliminary data from an ongoing laboratory incubation experiment suggest the production of both CH<sub>4</sub> and CO<sub>2</sub> by decomposition of thawed subsea permafrost organic matter, while N<sub>2</sub>O production was negligible. These data will be combined with detailed biomarker analysis to constrain the vulnerability of subsea permafrost organic matter to degradation to greenhouse gases upon thaw.</p>

2018 ◽  
Author(s):  
Birgit Wild ◽  
Natalia Shakhova ◽  
Oleg Dudarev ◽  
Alexey Ruban ◽  
Denis Kosmach ◽  
...  

2018 ◽  
Author(s):  
Birgit Wild ◽  
Natalia Shakhova ◽  
Oleg Dudarev ◽  
Alexey Ruban ◽  
Denis Kosmach ◽  
...  

Abstract. Thaw of subsea permafrost across the Arctic Ocean shelves might promote the degradation of organic matter to CO2 and CH4, but also create conduits for transfer of deeper CH4 pools to the atmosphere and thereby amplify global warming. In this study, we describe sedimentary characteristics of three subsea permafrost cores of 21–56 m length drilled near the current delta of the Lena River in the Buor–Khaya Bay on the East Siberian Arctic Shelf, including content, origin and degradation state of organic matter around the current thaw front. Grain size distribution and optically stimulated luminescence dating suggest the alternating deposition of aeolian silt and fluvial sand over the past 160 000 years. Organic matter in 3 m sections across the current permafrost table was characterized by low organic carbon contents (average 0.7 ± 0.2 %) as well as enriched δ13C values and low concentrations of the terrestrial plant biomarker lignin compared to other recent and Pleistocene deposits in the study region. The lignin phenol composition further suggests contribution of both tundra and boreal forest vegetation, at least the latter likely deposited by rivers. Our findings indicate high variability in organic matter composition of subsea permafrost even within a small study area, reflecting its development in a heterogeneous and dynamic landscape. Even with this relatively low organic carbon content, the high rates of observed subsea permafrost thaw in this area yield a thaw-out of 1.6 kg OC m−2 year−1, emphasizing the need to constrain the fate of the poorly described and thawing subsea permafrost organic carbon pool.


Author(s):  
Meilian Chen ◽  
Ji-Hoon Kim ◽  
Yun Kyung Lee ◽  
Dong-Hun Lee ◽  
Young Keun Jin ◽  
...  

Author(s):  
Reilly M. Blocho ◽  
Richard W. Smith ◽  
Mark R. Noll

AbstractThe purpose of this study was to observe how the composition of organic matter (OM) and the extent of anoxia during deposition within the Marcellus Formation in New York varied by distance from the sediment source in eastern New York. Lipid biomarkers (n-alkanes and fatty acids) in the extractable organic component (bitumen) of the shale samples were analyzed, and proxies such as the average chain length (ACL), aquatic to terrestrial ratio (ATR) and carbon preference index (CPI) of n-alkanes were calculated. Fatty acids were relatively non-abundant due to the age of the shale bed, but n-alkane distributions revealed that the primary component of the OM was terrigenous plants. The presence of shorter n-alkane chain lengths in the samples indicated that there was also a minor component of phytoplankton and algal (marine) sourced OM. Whole rock analyses were also conducted, and cerium anomalies were calculated as a proxy for anoxia. All samples had a negative anomaly value, indicating anoxic conditions during deposition. Two samples, however, contained values close to zero and thus were determined to have suboxic conditions. Anoxia and total organic matter (TOM) did not show any spatial trends across the basin, which may be caused by varying depths within the basin during deposition. A correlation between nickel concentrations and TOM was observed and indicates that algae was the primary source of the marine OM, which supports the lipid biomarker analysis. It was determined that the kerogen type of the Marcellus Formation in New York State is type III, consistent with a methane-forming shale bed.


2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


1998 ◽  
Vol 1998 ◽  
pp. 69-69
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

The gas production (GP) technique has previously been used to estimate the gas volume (fermentable energy (FE)) of compound feed ingredients for ruminants (Newbold et al., 1996). It was shown that the FE content of feed mixtures was represented by the combination of the total gas from the incubation of the individual feeds. However this additivity might not be consistent throughout the incubation period. The objectives were to test whether 1. other GP parameters give better estimates of FE for simple mixtures and are they additive; 2. whether organic matter apparently degraded in the rumen (OMADR) explain differences in GP; and 3. to find out if there are any other better measures than OMADR for estimating FE.


Sign in / Sign up

Export Citation Format

Share Document