Monitoring sediment transport and grain size dynamics along the Israeli continental shelf with multibeam bathymetry and backscatter data 

Author(s):  
Asaf Giladi ◽  
Mor Kanari ◽  
Timor katz ◽  
Gideon Tibor

<p>In 2017, the Israel Oceanographic and Limnological Research (IOLR) started an annual seafloor monitoring program. The aim of the program is to evaluate the rate of erosion/deposition and the influence of man-made infrastructures on the seabed along the Israeli continental shelf south of Akko. The survey program onboard R/V Bat-Galim includes a multibeam (Kongsberg EM2040), sub-bottom (Knudsen 3260 Chirp) mapping and box-core sediment sampling along 13 transects across the shelf, from WD 10-100 m. The multibeam was operated at 400-kHz yielding a horizontal resolution of 0.25-1.0 m (depending on water depth), and vertical uncertainty of several centimeters. Using the QPS FMGT software, both angular response curves (ARA) and 0.5 m horizontal resolution of Backscatter data (BS) were derived. The multibeam acoustic return intensities (BS) were locally calibrated at selected reference areas using in-situ sediment sampling. <br>The main source of sediments along the Israeli continental shelf is the Nile Delta which undergoes erosion since 1960 when the Aswan dam was constructed. Along the Israeli inner-shelf, these sediments are transported northward and westward by wind-derived currents and storms. The analysis of the bathymetric surfaces from the consecutive years 2017-2020 shows that the shelf is stable in terms of sediment processes except along the marine infrastructures and natural seafloor features (e.g. rocky bottom outcrops) where patterns of sediment accumulation and erosion are observed. The variability along the marine infrastructures is mostly seen in the shallow water (less than 30 m) where yearly changes of up to +/-0.4 m of sediment accumulation/erosion in the vertical axis were measured.<br>The locally calibrated multibeam BS enabled grain size mode evaluation ranging from very fine gravel (-1 phi) to clay (9 phi). Additional in-situ sampling validated the reliability of the grain size classification method for the Israeli, continental shelf. Accordingly, we show that the Israeli continental shelf south of Haifa Bay is characterized by a sandy seafloor strip at WD 0-35 m and a muddy strip that extends west up to WD 100 m (in agreement with previous studies). Gravelly areas are identified at the coast-parallel Kurkar outcrops (Calcareous sandstone rocky ridges or rock patches) in water depths of 10-15m and 35-40m and in some places even at WD of 90 m. This demonstrates that grain size classification by locally calibrated multibeam BS is likely to be a very useful and fast method for monitoring changes in seafloor characteristics over large areas over time.</p><p> </p>

2019 ◽  
Vol 37 (4) ◽  
pp. 515
Author(s):  
Gilberto Tavares de Macedo Dias ◽  
Luiz Henrique P. Fontana ◽  
Cleverson Guizan Silva ◽  
Rafael Cuellar de Oliveira e Silva ◽  
Uirá Cavalcanti Oliveira ◽  
...  

ABSTRACT.Marine dredging is a subaquatic excavation activity executed around the globe for various purposes by many industries. The negative impacts ofdredged material discharge on benthic ecosystems are diverse. Researches on the results of dredging on estuarine geomorphology and its sedimentary regime areusual. Still, the results of dumping dredged material off the coast, in the Brazilian continental shelf, are not easily found in the literature. The present research evaluatedthe geomorphic disturbance resulted from discharging dredged material from Rio de Janeiro Harbor in the inner Rio de Janeiro continental shelf. Grain size analysisof the dredged and dumped sediments was compared to the inner shelf original seabed sediments. The geomorphological impact was evaluated through bathymetricand high resolution seismic and side scan sonar imagery methods. Obtained data revealed significant geomorphologic changes on the offshore bottom caused by theaccumulation of compacted mud from the dredge site underlying the recent soft mud bottom of the harbor area. Besides the morphological sea bottom disturbance,sediment accumulation, and local grain size characteristics exhibited significant change, potentially impacting the surrounding benthic environment.Keywords: Guanabara Bay, seafloor geomorphology, marine sediments, marine pollution.RESUMO.A dragagem marinha é uma atividade de escavação subaquática executada em todo o mundo por muitas indústrias para diferentes fins. Os impactosnegativos do descarte de material dragado nos ecossistemas bentônicos são diversos. Pesquisas sobre os resultados da dragagem na geomorfologia estuarina e o seuregime sedimentar são frequentes. Ainda assim, os resultados do despejo de material dragado ao longo da costa, na plataforma continental brasileira, não são facilmenteencontrados na literatura. A presente pesquisa avaliou o distúrbio geomórfico resultante do descarte de material dragado do Porto do Rio de Janeiro na plataformacontinental interna do Rio de Janeiro. A granulometria dos sedimentos dragados e descartados foi comparada com os sedimentos originais do fundo marinho naplataforma interna. O impacto geomorfológico foi avaliado através de métodos batimétricos, sísmica de alta resolução e imageamento por sonar de varredura lateral.Os dados obtidos revelaram mudanças geomorfológicas significativas no fundo causadas pelo acúmulo de lama compactada do local dragado, subjacente ao fundode lama mole recente da área do porto. Além do distúrbio morfológico do fundo marinho, o acúmulo de sedimentos e as características locais de tamanho de grãoapresentaram mudança significativa, potencialmente impactando o ambiente bentônico circundante.Palavras-chave: Baía de Guanabara, geomorfologia submarina, sedimentos marinhos, poluição marinha.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 938
Author(s):  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Pavel Nerušil ◽  
Eva Kunzová

The aim of the study was to compare the concentrations of risk elements (As, Cu, Mn, Ni, Pb, Zn) in alluvial soil, which were measured by a portable X-ray fluorescence analyser (pXRF) in situ (FIELD) and in the laboratory (LABORATORY). Subsequently, regression equations were developed for individual elements through the method of construction of the regression model, which compare the results of pXRF with classical laboratory analysis (ICP-OES). The accuracy of the measurement, expressed by the coefficient of determination (R2), was as follows in the case of FIELD–ICP-OES: Pb (0.96), Zn (0.92), As (0.72), Mn (0.63), Cu (0.31) and Ni (0.01). In the case of LABORATORY–ICP-OES, the coefficients had values: Pb (0.99), Zn (0.98), Cu and Mn (0.89), As (0.88), Ni (0.81). A higher dependence of the relationship was recorded between LABORATORY–ICP-OES than between FIELD–ICP-OES. An excellent relationship was recorded for the elements Pb and Zn, both for FIELD and LABORATORY (R2 higher than 0.90). The elements Cu, Mn and As have a worse tightness in the relationship; however, the results of the model have shown its applicability for common use, e.g., in agricultural practice or in monitoring the quality of the environment. Based on our results, we can say that pXRF instruments can provide highly accurate results for the concentration of risk elements in the soil in real time for some elements and meet the principle of precision agriculture: an efficient, accurate and fast method of analysis.


2021 ◽  
Vol 239 ◽  
pp. 112274
Author(s):  
Henry Helmer-Smith ◽  
Nicholas Vlachopoulos ◽  
Marc-André Dagenais ◽  
Bradley Forbes

2009 ◽  
Vol 79-82 ◽  
pp. 1415-1418 ◽  
Author(s):  
Shu Qing Yan ◽  
Jing Pei Xie ◽  
Wen Yan Wang ◽  
Ji Wen Li

In this study, some low-titanium aluminum alloys produced by electrolysis were prepared and the effect of various titanium contents on microstructure and tensile property of Zn-Al alloy was investigated. The test results showed that addition of titanium by electrolysis is an effective way to refine the grain size of Zn-Al alloy. As the titanium content is 0.04 wt%, the grain size becomes to be a minimum value and the tensile property of the alloy reaches to the maximum. Electrolysis showed that titanium atoms are to be some inherent particles in low-titanium aluminum alloy. These titanium atoms enter into the aluminum melt liquid and spread to the whole melt rapidly under stirring action of electromagnetic field of the electric current. The heterogeneous phase nuclei are high melting TiC and TiAl3 particles formed from in-situ precipitating trace C and Ti during cooling process. These in-situ precipitating heterogeneous nucleation sites with small dimension, high dispersity, cleaning interface and fine soakage with melt, have better capacity of heterogeneous nucleation than of exotic particles. It may inhibit grain growth faster and more effective in pinning dislocations, grain boundaries or sub-boundaries.


2014 ◽  
Vol 93 ◽  
pp. 28-32 ◽  
Author(s):  
Maria Balsinha ◽  
Carlos Fernandes ◽  
Anabela Oliveira ◽  
Aurora Rodrigues ◽  
Rui Taborda

2007 ◽  
Vol 29-30 ◽  
pp. 143-146 ◽  
Author(s):  
Aamir Mukhtar ◽  
De Liang Zhang ◽  
C. Kong ◽  
P. R. Munroe

Cu-(2.5 or 5.0vol.%)Al2O3 nanocomposite balls and granules and Cu-(2.5vol.% or 5.0vol.%)Pb alloy powder were prepared by high energy mechanical milling (HEMM) of mixtures of Cu and either Al2O3 or Pb powders. It was observed that with the increase of the content of Al2O3 nanoparticles from 2.5vol.% to 5vol.% in the powder mixture, the product of HEMM changed from hollow balls into granules and the average grain size and microhardness changed from approximately 130nm and 185HV to 100nm and 224HV, respectively. On the other hand, HEMM of Cu–(2.5 or 5.0vol.%) Pb powder mixtures under the same milling conditions failed to consolidate the powder in-situ. Instead, it led to formation of nanostructured fine powders with an average grain size of less than 50nm. Energy dispersive X-ray mapping showed homogenous distribution of Pb in the powder particles in Cu–5vol.%Pb alloy powder produced after 12 hours of milling. With the increase of the Pb content from 2.5 to 5.0 vol.%, the average microhardness of the Cu-Pb alloy powder particles increases from 270 to 285 HV. The mechanisms of the effects are briefly discussed.


2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


Ocean Science ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 705-732 ◽  
Author(s):  
F. Gohin

Abstract. Sea surface temperature, chlorophyll, and turbidity are three variables of the coastal environment commonly measured by monitoring networks. The observation networks are often based on coastal stations, which do not provide a sufficient coverage to validate the model outputs or to be used in assimilation over the continental shelf. Conversely, the products derived from satellite reflectance generally show a decreasing quality shoreward, and an assessment of the limitation of these data is required. The annual cycle, mean, and percentile 90 of the chlorophyll concentration derived from MERIS/ESA and MODIS/NASA data processed with a dedicated algorithm have been compared to in-situ observations at twenty-six selected stations from the Mediterranean Sea to the North Sea. Keeping in mind the validation, the forcing, or the assimilation in hydrological, sediment-transport, or ecological models, the non-algal Suspended Particulate Matter (SPM) is also a parameter which is expected from the satellite imagery. However, the monitoring networks measure essentially the turbidity and a consistency between chlorophyll, representative of the phytoplankton biomass, non-algal SPM, and turbidity is required. In this study, we derive the satellite turbidity from chlorophyll and non-algal SPM with a common formula applied to in-situ or satellite observations. The distribution of the satellite-derived turbidity exhibits the same main statistical characteristics as those measured in-situ, which satisfies the first condition to monitor the long-term changes or the large-scale spatial variation over the continental shelf and along the shore. For the first time, climatologies of turbidity, so useful for mapping the environment of the benthic habitats, are proposed from space on areas as different as the southern North Sea or the western Mediterranean Sea, with validation at coastal stations.


Sign in / Sign up

Export Citation Format

Share Document