scholarly journals Mapping river recharge rates with stable isotopes and tritium-helium groundwater ages

Author(s):  
Ate Visser ◽  
Laura Foglia ◽  
Helen Dahlke ◽  
Amelia Vankeuren ◽  
Maribeth Kniffin ◽  
...  

<p>While climate change will challenge the future of California’s water resources, groundwater can buffer variability in precipitation and streamflow, if managed sustainably. Enhanced river recharge is an important tool to reach sustainable groundwater management in the California Central Valley (USA). Understanding and predicting recharge rates of river water, either natural river bank infiltration or managed aquifer recharge (MAR) during floods (Flood-MAR) or on agricultural land (Ag-MAR) is essential to evaluate the sustainability of groundwater management plans. Groundwater ages, combined with other isotopic and noble gas evidence, can elucidate surface water-groundwater interactions and support river recharge rates calculations over longer time periods.</p><p>Our study is focused on the recharge from the Cosumnes River in the California Central Valley. The Cosumnes River forms the boundary between the Sacramento Valley groundwater basin to the north and the San Joaquin Valley groundwater basin to the south. For this study, 28 new samples were collected for the analysis of 3H/3He age, noble gases, and stable isotopes. 25 additional samples from the California Waterboards Groundwater Ambient Monitoring and Assessment (GAMA) Shallow Aquifer Assessment program were included, which were collected and analyzed by the USGS California Water Science Center in 2017.</p><p>We find that 28% of groundwater in the San Joaquin – Cosumnes groundwater subbasin originated as river water recharge, based on the interpolated mean δ<sup>18</sup>O (7.7 ‰ ), compared with river water (-9 ‰) and local precipitation recharge (-7 ‰) end-members. River water is a source of modern recharge, resulting in high tritium concentrations close to the Cosumnes River. In contrast, ambient groundwater from local precipitation recharge is predominantly pre-modern or fossil, containing less than 1 pCi/L tritium. Combining groundwater ages with the distance to the river, aquifer thickness, and porosity, estimates of river water recharge rate vary between 0.02 km<sup>3</sup>/yr and 0.035 km<sup>3</sup>/yr. These quantitative estimates of river water recharge will constrain the numerical groundwater flow model for this basin and aid groundwater managers in developing sustainability plans to balance groundwater pumping with recharge rates.</p>

EKSPLORIUM ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 43
Author(s):  
Rismah Taufik Andhihutomo ◽  
Satrio Satrio ◽  
Rasi Prasetio ◽  
Agus Budhie Wijatna

ABSTRAKPenelitian mengenai interaksi airtanah dangkal dengan air sungai Kali Garang di Semarang, Jawa Tengah, menggunakan parameter isotop 18O dan 2H telah dilakukan. Sebanyak 16 sampel air tanah dangkal dan 3 sampel air sungai diambil untuk analisis kandungan isotop stabil d18O dan d2H menggunakan alat Liquid Water Isotope Analyzer LGR DLT-100. Hasil analisis memperlihatkan adanya dua asal daerah masukan air: daerah pertama memiliki kandungan isotop d18O antara -9,41 ‰ hingga-8,5 ‰ dan d2H antara -58,2 ‰ hingga -51,6 ‰; daerah kedua memiliki kandungan isotop d18O dan d2H masing-masing -7,15 ‰ dan -41,55 ‰. Dengan demikian, hasil tersebut mengindikasikan bahwa sampel-sampel air pertama berasal dari elevasi yang relatif lebih tinggi jika dibandingkan dengan asal sampel air kedua, namun keduanya tidak mengalami interaksi dengan air sungai. Sedangkan sampel air tanah lainnya menunjukkan bahwa satu sampel (R4) memiliki interelasi berupa pencampuran dengan air sungai dan dua sampel lainnya (L1 dan R1) mengalami pencampuran dengan air asin atau air laut. ABSTRACTA study related to shallow groundwater interaction with Kali Garang River water in Semarang, Central Java using stable isotopes of 18O and 2H has been conducted. As much as 16 groundwater and 3 river water samples were taken for stable isotopes d18O and d2H analysis using Liquid water isotope analyzer LGR DLT-100. The results of analysis shows that there are two area of water recharge origin: the first area contains d18O isotope ranging between -9.41 ‰ to -8.5 ‰ and d2H between -58.2 ‰ to -51.6 ‰; the second area contains isotopes of d18O and d2H -7.15 and -41.55 ‰, respectively. Thus, these results indicate that the first water samples originate from a higher elevation than the origin of the second water sample, but both of them have no interrelation with river water. Whereas, other groundwater samples show that the sample (R4) has interrelation (i.e. mixing) with the river water and two other samples (L1 and R1) have interrelation with salty water or seawater.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 720
Author(s):  
Anna Jurado ◽  
Enric Vázquez-Suñé ◽  
Estanislao Pujades

Pharmaceuticals, such as non-steroidal anti-inflammatory drugs (NSAIDs) and their metabolites, have become a major concern due to their increasing consumption and their widespread occurrence in the environment. In this paper, we investigate the occurrence of NSAIDs and their metabolites in an urban aquifer, which may serve as a potential resource for drinking water, and propose a methodology to assess the removal of these substances in the river–groundwater interface. Then, risk quotients (RQs) are computed, in order to determine the risk posed by the single NSAIDs and their mixture to human health. To this end, six NSAIDs and two metabolites were collected from an urban aquifer located in the metropolitan area of Barcelona (NE, Spain), in which the major pollution source is a contaminated river. All of the target NSAIDs were detected in groundwater samples, where the concentrations in the aquifer were higher than those found in the river water (except for ibuprofen). Diclofenac, ketoprofen, propyphenazone and salicylic acid were detected at high mean concentrations (ranging from 91.8 ng/L to 225.2 ng/L) in the aquifer. In contrast, phenazone and mefenamic acid were found at low mean concentrations (i.e., lower than 25 ng/L) in the aquifer. According to the proposed approach, the mixing of river water recharge into the aquifer seemed to some extent to promote the removal of the NSAIDs under the sub-oxic to denitrifying conditions found in the groundwater. The NSAIDs that presented higher mean removal values were 4OH diclofenac (0.8), ibuprofen (0.78), salicylic acid (0.35) and diclofenac (0.28), which are likely to be naturally attenuated under the aforementioned redox conditions. Concerning human health risk assessment, the NSAIDs detected in groundwater and their mixture do not pose any risk for all age intervals considered, as the associated RQs were all less than 0.05. Nevertheless, this value must be taken with caution, as many pharmaceuticals might occur simultaneously in the groundwater.


2020 ◽  
Vol 21 (2) ◽  
pp. 139
Author(s):  
Evarista Ristin Pujiindiyati ◽  
Bungkus Pratikno

Aquifer in river bank area is mostly susceptive toward pollution occurring in river. One of parameters to determine the interaction process between groundwater and river is a natural isotope of 222Rn. The significant difference of radon concentration in groundwater and river water can be utilized as a scientific basis for investigating groundwater infiltration in river bank. Those studied parameters are residence time and infiltration rate. The research using 222Rn had been conducted in shallow groundwater of Ciliwung river bank - South Jakarta during rainy and dry season. The range of 222Rn concentration in shallow groundwater monitored in dry season was between 666 - 2590 Bq/m3 which was higher than that of rainy season ranging at 440 to 1546 Bq/m3. Otherwise, concentration of 222Rn in river water could not be detected (its 222Rn concentration = 0 Bq/m3) due to its much lower concentration either rainy or dry season. During dry season monitoring, equilibration between groundwater and river water was reached at the distance approximately 98 - 140 m away from river side. Estimating residence time based on 222Rn concentration at nearest site from the river and at equlibration area was 4.2 days such that the infiltration rate from river water into aquifer might be 7.8 m/day.Keywords: 222Rn, groundwater, residence time, infiltration rate.


2020 ◽  
Vol 31 (1) ◽  
pp. 1-9
Author(s):  
MA Hanif ◽  
R Miah ◽  
MA Islam ◽  
S Marzia

This study was conducted to evaluate the Kapotaksha River water pollution status and its impacts on Human health and Environment. This study conducted a case study on four selected areas (Barakpur, Srirampur, Prbazar, and Gouranandapur) on the Kapotaksha river bank at Jhikargas Upazila. This river water pollution occurs by some natural process such as flood, storm, and natural biodegraded. But human activities are major reasons for the river water pollution. Industrialization, urbanization, domestic waste, sewage system, agrochemicals, etc are major causes for river water pollution. This more polluted water has an impact on human health and environment. This study was conducted to find out the polluted water due to various types of diseases such as scabies, asthma, dysentery and respiratory disease. Most of the people (49%) are affected by Scabies, 4% are affected by diarrhea, 5% are affected by dysentery, 25% of people are suffering from respiratory diseases and 4% are suffering from asthma and the polluted water pollutes soil by using the water in agriculture purpose answered by 20% respondents which is 100% of farmer respondents. If someone does not use this water can not affect soil answered by 80% of respondents. This river water becomes more polluted and harmful for human health and environment because this water hampered by the local colony, local trader, lack of proper management of sewage system, miss-use on the riverbank area for the dumping various solid waste on the river bank, chemical fertilizers, industries etc. At present now we cannot fulfill control this continuous river water pollution but we can minimize this problem and it would be positive for human health, others living organisms and Environment. Progressive Agriculture 31 (1): 1-9, 2020


2019 ◽  
Vol 98 ◽  
pp. 12017
Author(s):  
Jelena Parlov ◽  
Zoran Kovač ◽  
Jadranka Barešić

Water stable isotopes were used to investigate hydrological pathways and interactions between surface water and groundwater in the Zagreb aquifer system (Croatia). δ2H and δ18O values indicate a spatial variability of the influence of individual groundwater sources inside the aquifer – local precipitation and the Sava River water. Fractions of surface water in groundwater strongly depend on fluctuations of the river water level and less on the distance from the Sava River. These data extend our understanding of groundwater flow in the Zagreb aquifer system, interactions between Sava River water, local precipitation and groundwater. The results of the research allow more precise monitoring plans and definition of the sanitary protection zones of the well fields in the future.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1983 ◽  
Author(s):  
Željka Brkić ◽  
Mladen Kuhta ◽  
Tamara Hunjak ◽  
Ozren Larva

Tracer methods are useful for investigating groundwater travel times and recharge rates and analysing impacts on groundwater quality. The most frequently used tracers are stable isotopes and tritium. Stable isotopes of oxygen (δ18O) and hydrogen (δ2H) are mainly used as indicators of the recharge condition. Tritium (3H) is used to estimate an approximate mean groundwater age. This paper presents the results of an analysis of stable isotope data and tritium activity in Croatian groundwater samples that were collected between 1997 and 2014 at approximately 100 sites. The composition of the stable isotopes of groundwater in Croatia originates from recent precipitation and is described using two regional groundwater lines. One of them is applied to groundwater accumulated in the aquifers in the Pannonian part of Croatia and the other is for groundwater accumulated in the Dinaric karst of Croatia. The isotope content shows that the studied groundwater is mainly modern water. A mix of sub-modern and modern water is mostly accumulated in semi-confined porous aquifers in northern Croatia, deep carbonate aquifers, and (sub)thermal springs.


Sign in / Sign up

Export Citation Format

Share Document