Comfort-energy nexus in naturally ventilated affordable mass housing with alternative constructions in the developing world

Author(s):  
Roshmi Sen ◽  
Shankha Pratim Bhattacharya ◽  
Subrata Chattopadhyay

<p>There is a strong positive correlation between thermal comfort quality experienced inside a building and its energy efficiency. This is more obvious in case of mechanically ventilated spaces where the energy gains are directly related to the thermal load, as compared to free running or naturally ventilated spaces. Current state of arts assess the energy efficiency of building envelops in terms of the cumulative thermal load in the operating phase of the building that are catered by mechanical ventilations. Our study aims at addressing this gap of research in assessing the thermal comfort quality of naturally ventilated residential living spaces. Our study is designed in a warm-humid climate setting and in the context of affordable mass housing in the developing world where mechanical ventilation is unaffordable or affordable only for a definite period of the day and during peak summer seasons; such buildings are said to be operating in temporal mixed mode.</p><p>Affordable mass housing constitutes 95% housing demand in the residential sector in India. Various alternative materials and composite roofing and walling envelops have been envisioned in the past decade for such constructions, however, their effectiveness in terms of comfort quality has not been assessed for naturally ventilated envelops. Our study introduces a model to assess the thermal performance of naturally ventilated bedrooms constructed with alternate building envelop configurations. We attempt to review  and compare alternative walling technologies and the currently emerging mass housing construction systems in India with the base case housing envelop constructions commonly in practice in India that use ordinary burnt clay brick walls and reinforced concrete roofs. We compare the thermal comfort purveyed in the indoor bedroom spaces using the adaptive thermal comfort model in EN15251 as thermal neutrality temperature. We assess and compare alternative envelop performance using two measuring thermal comfort indices suited for naturally ventilated scenarios - the discomfort hours index and the cooling indoor degree hours index. Discomfort hours measures the number of hours of discomfort experienced during the summer solstice and spring equinox months whereas the cooling indoor degree hours measures the cumulative average temperature elevation from the comfort temperature in the hours marked as discomfort hours. In our study, light gauge steel framed structure with foam concrete filling records the minimum number of discomfort hours, however purveys maximum cooling indoor degree hours.</p><p>The above two comfort indices have not been compared in the past to assess the thermal comfort quality in naturally ventilated or temporal mixed mode buildings. Our study frames a thermal comfort assessment model for naturally ventilated envelops and thereby offers a paradigm shift from life cycle cooling load minimization models which are appropriate for mechanically conditioned spaces. Our observations are also important for mass housing envelop selection and in the context of the current policy frameworks in the developing world, aimed at minimizing the projected demand for residential space cooling and future energy footprints in the housing sector.</p>

2021 ◽  
Vol 13 (3) ◽  
pp. 1353 ◽  
Author(s):  
Jonghoon Ahn

Various methods to control thermal conditions of building spaces have been developed to investigate their performances of energy use and thermal comfort in the system levels. However, the high control precision used in several studies dealing with data-driven methods may cause energy increases and the high energy efficiency may be disadvantageous for maintaining indoor environmental quality. This study proposes a model that optimizes the supply air condition to effectively reach the setting values by two-way controls of the supply air conditions. In such a process, if the results of the thermal comfort level are outside the range of the initial setting values, an adaptive model starts to work to send additional signals to adjust the set-point temperature. In order to assess its efficiency, the conventional thermostat model and fuzzy deterministic model are adopted as comparators. Comparing the results of the proposed network-based model with conventional control models, an improved control performance from 15.5% to 29.3% in thermal comfort indices was identified, as well as an over 30% improvement in energy efficiency. As a consequence, the network-based adaptive control rule supervising thermal comfort indices properly operates to abate increases in its energy use without compromising its thermal comfort. This performance can be significant in places where many spaces are woven at high density, and in situations where better thermal comfort can increase users’ workability and productivity.


2019 ◽  
Vol 9 (4) ◽  
pp. 556-564 ◽  
Author(s):  
Pedro Henrique Watanabe ◽  
Tatianne Alexandre Azevedo ◽  
Margarita Augusto do Nascimento Silva ◽  
Nathalia Martins Oliveira ◽  
Thalles Ribeiro Gomes ◽  
...  

This study aimed to evaluate the thermal comfort considering natural and cooling ventilation on the performance, physiological parameters and thermal comfort indices for sows from first to third parturition. A total of 30 sows from commercial lineage (genetic base Landrace x Large White) initially weighing 252.3±5.7, 280.8±9.5 and 324.5±4.8 kg at first, second and third parturition, respectively, were distributed in a 3x2 factorial arrangement, considering the three parturition orders and the two ventilation methods, with five replicas per treatment. The effect of ventilation methods and times of the day on relative humidity, radiant thermal load, temperature and humidity index and black globe humidity index. There was an interaction among ventilation methods and parturition order for sow weight at weaning and daily feed intake. Regarding the females physiological parameters, with the exception of rectal temperature, there was an interaction between ventilation methods and times of the day. The thermal conditioning using cooling ventilation provides better values for thermal comfort indexes of the sows and promotes an increase in feed intake, mainly in gilts.


2020 ◽  
Vol 119 (820) ◽  
pp. 310-316
Author(s):  
Alasdair Roberts

Since the 1990s and Bill Clinton’s embrace of key parts of Ronald Reagan’s legacy, mainstream US governance has been guided by a bipartisan consensus around a formula of shrinking the federal government’s responsibilities and deregulating the economy. Hailed as the ultimate solution to the age-old problem of governing well, the formula was exported to the developing world as the Washington Consensus. Yet growing political polarization weakened the consensus, and in a series of three major crises over the past two decades—9/11, the global financial crisis, and the COVID-19 pandemic—US policymakers opted for pragmatism rather than adherence to the old formula, which appears increasingly inadequate to cope with current governance challenges.


2021 ◽  
Vol 40 ◽  
pp. 102378
Author(s):  
Saud Ghani ◽  
Ahmed Osama Mahgoub ◽  
Foteini Bakochristou ◽  
Esmail A. ElBialy

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1849
Author(s):  
Alexandre F. Santos ◽  
Pedro D. Gaspar ◽  
Heraldo J. L. de Souza

This article considers the ideal storage conditions for multiple vaccine brands, such as Pfizer, Moderna, CoronaVac, Oxford–AstraZeneca, Janssen COVID-19 and Sputnik V. Refrigerant fluid options for each storage condition, thermal load to cool each type of vaccine and environmental impacts of refrigerants are compared. An energy simulation using the EUED (energy usage effectiveness design) index was developed. The Oxford–AstraZeneca, Janssen COVID-19 and CoronaVac vaccines show 9.34-times higher energy efficiency than Pfizer. In addition, a TEWI (total equivalent warming impact) simulation was developed that prioritizes direct environmental impacts and indirect in refrigeration. From this analysis, it is concluded that the cold storage of Oxford–AstraZeneca, Janssen COVID-19 and CoronaVac vaccines in Brazil generates 35-times less environmental impact than the Pfizer vaccine.


2021 ◽  
Vol 144 ◽  
pp. 110969
Author(s):  
Ghezlane Halhoul Merabet ◽  
Mohamed Essaaidi ◽  
Mohamed Ben Haddou ◽  
Basheer Qolomany ◽  
Junaid Qadir ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antoine Riaud ◽  
Cui Wang ◽  
Jia Zhou ◽  
Wanghuai Xu ◽  
Zuankai Wang

AbstractElectric energy generation from falling droplets has seen a hundred-fold rise in efficiency over the past few years. However, even these newest devices can only extract a small portion of the droplet energy. In this paper, we theoretically investigate the contributions of hydrodynamic and electric losses in limiting the efficiency of droplet electricity generators (DEG). We restrict our analysis to cases where the droplet contacts the electrode at maximum spread, which was observed to maximize the DEG efficiency. Herein, the electro-mechanical energy conversion occurs during the recoil that immediately follows droplet impact. We then identify three limits on existing droplet electric generators: (i) the impingement velocity is limited in order to maintain the droplet integrity; (ii) much of droplet mechanical energy is squandered in overcoming viscous shear force with the substrate; (iii) insufficient electrical charge of the substrate. Of all these effects, we found that up to 83% of the total energy available was lost by viscous dissipation during spreading. Minimizing this loss by using cascaded DEG devices to reduce the droplet kinetic energy may increase future devices efficiency beyond 10%.


Sign in / Sign up

Export Citation Format

Share Document