A hydrodynamically consistent "slope-area" relationship for analysing fluvial landscape with wide rivers.

Author(s):  
Thomas Bernard ◽  
Philippe Davy ◽  
Dimitri Lague

<p>Landforms and channel networks have long been analysed through co-variation between topographic slope and drainage area, which is derived from easy-to-implement flow routing algorithms (D8 or Dinf) relying on topographic slopes. The slope-area relationship has been successful to identify morphologic regions in landscapes likely reflecting the erosion and transport processes that shape them. But the implicit assumption for using the slope-area relationship is that channels are narrower than the DEM resolution and that, at this scale, the flow is correctly routed. These assumptions are no more valid for very high-resolution DEM (HRDEM, <2 m) that are now widely available with unprecedented level of vertical accuracy (< 20 cm). In wide rivers, the drainage area algorithm puts the total river discharge in one of the pixel of each channel section and let the others with unrealistically low areas. In other words, D8 or Dinf algorithms are not adapted to resolve the lateral extent of rivers.</p><p>In this study, we propose a new topographic analysis relying on realistic hydraulic simulations of surface flow. For this, we use a particle-based hydraulic model, Floodos, which solves the 2D shallow water equations, and we present an analysis of the 1m LiDAR DEM of the Elder creek watershed in California, for which channels are up to ten meters wide. By simulating channel flows with water depth, hydraulic slope, specific discharge and bed shear stress, the hydraulic model reveals landscape patterns that are not described by the slope-area relationship. Additionally, the flow model handles very well the small irregularities of the topography.</p><p>We introduce new geomorphic descriptors: the hydraulic slope and the specific drainage area (or specific discharge). The catchment organization is then analysed through a new framework called the hydraulic slope-area diagram. This diagram has several benefits over the classical slope-area diagram. It correctly classifies pixels located in the river for a given discharge in the fluvial domain leading to a sharper transition between the colluvial and fluvial domain. The hillslope-to-valley transition is also insensitive to the DEM resolution. Channel width can also be automatically calculated based on a joint analysis of Dinf and 2D shallow water simulation. Finally, the capability to perform the hydraulic slope-area for various discharges brings a richer description of landscape organization by highlighting discharge-dependent regions such as floodplain areas and fluvial terraces.</p>

2011 ◽  
Vol 8 (3) ◽  
pp. 5497-5522 ◽  
Author(s):  
A. Hasan ◽  
P. Pilesjö ◽  
A. Persson

Abstract. It is important to study the factors affecting estimates of wetness since wetness is crucial in climate change studies. The availability of digital elevation models (DEMs) generated with high resolution data is increasing, and their use is expanding. LIDAR earth elevation data have been used to create several DEMs with different resolutions, using various interpolation parameters, in order to compare the models with collected surface data. The aim is to study the accuracy of DEMs in relation to topographical attributes such as slope and drainage area, which are normally used to estimate the wetness in terms of topographic wetness indices. Evaluation points were chosen from the high-resolution LIDAR dataset at a maximum distance of 10 mm from the cell center for each DEM resolution studied, 0.5, 1, 5, 10, 30 and 90 m. The interpolation method used was inverse distance weighting method with four search radii: 1, 2, 5 and 10 m. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. The accuracy of the estimated elevation for different slopes was tested using the DEM with 0.5 m resolution. Drainage areas were investigated at three resolutions, with coinciding evaluation points. The ability of the model to generate the drainage area at each resolution was obtained by pairwise comparison of three data subsets. The results show that the accuracy of the elevations obtained with the DEM model are the same for different resolutions, but vary with search radius. The accuracy of the values (NMAD of errors) varies from 29.7 mm to 88.9 mm, being higher for flatter areas. It was also found that the accuracy of the drainage area is highly dependent on DEM resolution. Coarse resolution yielded larger estimates of the drainage area but lower slope values. This may lead to overestimation of wetness values when using a coarse resolution DEM.


1984 ◽  
Vol 44 ◽  
Author(s):  
C. L. Carnahan

AbstractGradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for.


2021 ◽  
Author(s):  
Fergus McNab ◽  
Taylor Schildgen ◽  
Jens Turowski ◽  
Andrew Wickert

<p>Periodic variation in Earth's orbit leads to variation in temperature and precipitation at its surface that are expected to exert a profound influence on landscape evolution. Indeed, cyclical fluctuations in sediment yield and grain size are a ubiquitous feature of the geological record, and recurrence times of geomorphological features such as fluvial terraces and alluvial fans often appear to reflect orbital periodicities. However, making quantitative interpretations of these records requires a detailed understanding of the ways in which sediment is transported from mountainous source regions along alluvial channels to depositional sinks. Sediment transport processes may dampen (i.e. buffer, 'shred') or amplify climate signals, such as changes in channel elevation or sediment flux, and may introduce a lag between them and the responsible external forcing. Recent modelling studies, mostly focused on the potential transmission of climatic signals to sedimentary archives, have predicted a wide range of behaviour and have proven challenging to test in the field. Here, we aim to clarify this discussion and also consider the potential preservation of climatic signals by fluvial terraces along alluvial channels. Our starting point is a recently developed model describing the long-profile evolution of gravel-bed rivers. This model is the first of its kind to be derived from first principles using physical relationships that have been extensively tested in laboratory settings, and takes a non-linear diffusive form. We employ perturbation theory to obtain approximate analytical solutions to the relevant equations that describe how channel elevation and sediment flux vary in response to periodic fluctuations in discharge and sediment supply. Our solutions contain expressions for response amplitudes and lag times as functions of downstream distance, system 'diffusivity' and forcing frequency. Lag times can be a significant fraction of the forcing period, implying that care is required when interpreting the timings of terrace formation in terms of changes in discharge or sediment supply. We also show that at the onset of periodic forcing, or a change in the dominant forcing period, alluvial channels undergo a transient response as they adjust to a new quasi-steady state. Importantly, this result implies that suites of fluvial terraces can be preserved without the need for significant local base-level fall. Since the expressions presented here are defined in terms of fundamental properties of alluvial channels, they should be readily applicable to real settings.</p>


2017 ◽  
Vol 34 (8) ◽  
pp. 2836-2861 ◽  
Author(s):  
Chunchen Xia ◽  
Zhixian Cao ◽  
Gareth Pender ◽  
Alistair Borthwick

Purpose The purpose of this paper is to present a fully conservative numerical algorithm for solving the coupled shallow water hydro-sediment-morphodynamic equations governing fluvial processes, and also to clarify the performance of a conventional algorithm, which redistributes the variable water-sediment mixture density to the source terms of the governing equations and accordingly the hyperbolic operator is rendered similar to that of the conventional shallow water equations for clear water flows. Design/methodology/approach The coupled shallow water hydro-sediment-morphodynamic equations governing fluvial processes are arranged in full conservation form, and solved by a well-balanced weighted surface depth-gradient method along with a slope-limited centred scheme. The present algorithm is verified for a spectrum of test cases, which involve complex flows with shock waves and sediment transport processes with contact discontinuities over irregular topographies. The computational results of the conventional algorithm are compared with those of the present algorithm and evaluated by available referenced data. Findings The fully conservative numerical algorithm performs satisfactorily over the spectrum of test cases, and the conventional algorithm is confirmed to work similarly well. Originality/value A fully conservative numerical algorithm, without redistributing the water-sediment mixture density, is proposed for solving the coupled shallow water hydro-sediment-morphodynamic equations. It is clarified that the conventional algorithm, involving redistribution of the water-sediment mixture density, performs similarly well. Both algorithms are equally applicable to problems encountered in computational river modelling.


Paleobiology ◽  
1982 ◽  
Vol 8 (4) ◽  
pp. 402-407 ◽  
Author(s):  
David R. Lindberg ◽  
Michael G. Kellogg

Associations of bathymetrically anomalous fossils, a phenomenon particularly common in shallow-water, marine, Neogene faunas of the northeastern Pacific, have yet to be explained adequately. No known physical transport processes can selectively move species upslope from deep water into diverse nearshore, shallow-water habitats. Previously proposed biological explanations are based on undocumented phenomena. We document bathymetric anomalies in Recent mollusc accumulations on Southeast Farallon Island, California, that are created by the activities of diving marine birds. Application of these observations to patterns in the Neogene fossil record is direct, involving the same genera and often the same species. We argue that the process has occurred since at least the Miocene when diving marine birds radiated rapidly, probably in response to trophic resources created by intensive upwelling (Lipps and Mitchell 1976) and that they could have transported specimens upslope in sufficient quantity to have contributed anomalous species to the Neogene fossil record. Specific examples from the literature are discussed.


2021 ◽  
Author(s):  
Richard Mason ◽  
Lina Polvi

<p>Research to understand the drivers of river form and processes has focussed on alluvial sand and gravel-bed channels. However, boulder-bed rivers are also an abundant channel type, particularly in previously glaciated and mountainous regions. Understanding boulder distribution in rivers is important because of their effects on  channel hydraulics and sediment transport processes. Boulder-bed channels in low-relief, previously glaciated landscapes may be considered semi-alluvial since the boulders likely were not deposited by fluvial processes (unlike in e.g., step-pool mountain channels). However, the relative importance of glacial legacy sediment and fluvial processes as drivers of boulder-bed river morphology is poorly understood. This is especially true in northern Sweden where channel clearance for timber floating has resulted in the removal of boulders from most rivers. Restoration of these rivers involves the replacement of boulders but is challenged by a lack of geomorphological understanding.</p><p>This study aimed to quantify the morphological characteristics of northern Swedish boulder-bed streams and determine the association between fluvial and glacial legacy controls on these channels. We undertook a large-scale field campaign surveying 20 rivers (drainage area: 15 - 112 km<sup>2</sup>) that have not been cleared for timber floating. At each reach, we measured channel morphology using a total station over approximately 100 m river length, surveying the channel planform, thalweg and 5 cross sections. In addition, we measured the location, diameter and protrusion of every boulder (> D<sub>84</sub>) within each reach. We also conducted a survey of the size and density of boulders on the floodplain to compare to in-channel boulder distributions. We coupled this field campaign with analysis of digital elevation models, surficial geology, glacial landform maps, and hydrological data to investigate potential landscape controls on reach-scale geomorphology. Associations between drainage area, channel slope, width and D<sub>84</sub> as well as longitudinal clustering of boulders into fluvial bed-forms would indicate fluvial rather than legacy glacial drivers.</p><p>Preliminary results show high variability in the morphology of reference sites, from low-gradient reaches with high floodplain connectivity to steep and narrow channels (Slope ranged 1.1 - 8.8%). D<sub>84</sub> ranged from 0.4 m to 2.1 m with some sites having as many as 500 large boulders (> 1 m diameter) in a 100 m reach. D<sub>84</sub> was not associated with channel slope and boulders were not clustered longitudinally in most reaches. This suggests that boulder spacing is the result of glacial legacy controls. These results are important for understanding geomorphic processes in boulder-bed channels and how channel form relates to reach- and landscape-scale controls. The relative importance of fluvial versus glacial legacy controls on boulder-bed channel morphology is also important to help restoration practitioners more accurately identify reference states of boulder-bed channels in previously glaciated landscapes.</p>


2021 ◽  
Author(s):  
Manuel López-Vicente ◽  
Joaquín Montenegro-Rodríguez ◽  
María del Carmen Antolín ◽  
Yolanda Gogorcena

<p>The ability of identifying –based on numerical analysis– disconnected areas –in terms of overland flow pathways– depends on the digital elevation model (DEM) resolution, type of flow accumulation algorithm and DEM accuracy. On the other hand, tillage practices (in lowlands) and terrain preparation (at any slope gradient) may condition the occurrence of permanent/ temporal disconnected areas. In this study, the effect of DEM resolution and the presence of a drainage ditch and forest trails on the number, location and characteristics of disconnected areas is evaluated in a steep (mean slope gradient of 29%) farmland area of the Spanish Pyrenees. A new vineyard plantation (3785 m<sup>2</sup> and 5120 m<sup>2</sup> including the transit area; espalier system) and its upslope drainage area are evaluated. This site is located near Barbenuta village (Huesca province), at high elevation (1184-1260 m a.s.l.). Abandoned terraced fields and patches of natural vegetation (trees and shrubs) occupy the upslope area, where several forest trails cross from east to west. To protect soil against water soil erosion, farmers built a drainage ditch (total length of 137 m; ca. 0.30 m width; ca. 0.15 m depth) upslope the vineyard boundary, which minimizes runoff entrance into the field. A professional drone (senseFly© eBee X) was used to obtain –after point cloud processing– Structure-from-Motion (SfM)-derived DEMs at different spatial resolution, namely: 1, 0.5, 0.2, 0.1 and 0.05 m. We used combined information of the DEMs before and after filling the local sinks. As expected, the number (n=34, 341, 1079, 1272 and 1907) and size (mean=500, 60, 21, 18 and 12 m<sup>2</sup>; median=68, 15, 5, 4 and 2 m<sup>2</sup>; σ=920, 178, 69, 71 and 49 m<sup>2</sup>) of sub-basins increased and decreased, respectively, with decreasing the pixel size, due to fractal geometry and higher influence of micro-topography components (e.g. soil roughness, random local sinks) –higher ratios of 'residual topography (σ of slope) / pixel size': 0.2 (at coarser resolution), 1.8, 20.3, 113.6 and 636.8 (at finer resolution)–. The total area also varied with the different DEMs: 17010, 20514, 22398, 22852 and 22807 m<sup>2</sup>. The number (n=21, 292, 903, 928 and 1283) and area (41, 143, 118, 58 and 44 m<sup>2</sup>) of disconnected areas increased and decreased, respectively, with decreasing the pixel size, representing 0.24%, 0.70%, 0.53%, 0.25% and 0.19% of the total drainage area. Similar differences were observed in other topographic metrics like the drainage-boundary perimeter and maximum flow length. These results prove the impossibility of defining a unique overland flow pattern. Further research should be focused on the role of runoff depth and how the effect of man-made landscape elements (drainage ditch, forest trail) and practices (tillage) on disconnectivity may depend on rainfall depth and intensity, and indirectly on plant growth.</p>


Sign in / Sign up

Export Citation Format

Share Document