scholarly journals Characterising extratropical near tropopause analysis humidity biases and their radiative effects on temperature forecasts

Author(s):  
Jake Bland ◽  
Suzanne Gray ◽  
John Methven ◽  
Richard Forbes

<p>A cold bias in the extratropical lowermost stratosphere in forecasts is one of the most prominent systematic temperature errors in numerical weather prediction models. Hypothesized causes of this bias include radiative effects from a collocated moist bias in model analyses. Such biases would be expected to affect extratropical dynamics and result in the misrepresentation of wave propagation at tropopause level. Here the extent to which these biases are connected is quantified. Observations from radiosondes are compared to operational analyses and forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) and Met Office Unified Model (MetUM) to determine the magnitude and vertical structure of these biases. Both operational models over-estimate lowermost stratospheric specific humidity by around 70% of the observed values on average, around 1km above the tropopause. This moist bias is already present in the initial conditions and changes little in forecasts over the first five days. Though temperatures are represented well in the analyses, the IFS forecasts anomalously cool in the lower stratosphere, relative to verifying radiosonde observations, by 0.2K per day. The IFS single column model is used to show this temperature change can be attributed to increased long-wave radiative cooling due to the lowermost stratospheric moist bias in the initial conditions. However, the MetUM temperature biases cannot be entirely attributed to the moist bias, and another significant factor must be present. These results highlight the importance of improving the humidity analysis to reduce the extratropical lowermost stratospheric cold bias in forecast models and the need to understand and mitigate the causes of the moist bias in these models.</p>

2014 ◽  
Vol 21 (5) ◽  
pp. 1027-1041 ◽  
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Geostationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), and improving initial conditions during several data assimilation cycles. However, the 6 h forecast after the assimilation did not show a clear improvement in terms of root mean square (RMS) errors.


2016 ◽  
Vol 144 (5) ◽  
pp. 1909-1921 ◽  
Author(s):  
Roman Schefzik

Contemporary weather forecasts are typically based on ensemble prediction systems, which consist of multiple runs of numerical weather prediction models that vary with respect to the initial conditions and/or the parameterization of the atmosphere. Ensemble forecasts are frequently biased and show dispersion errors and thus need to be statistically postprocessed. However, current postprocessing approaches are often univariate and apply to a single weather quantity at a single location and for a single prediction horizon only, thereby failing to account for potentially crucial dependence structures. Nonparametric multivariate postprocessing methods based on empirical copulas, such as ensemble copula coupling or the Schaake shuffle, can address this shortcoming. A specific implementation of the Schaake shuffle, called the SimSchaake approach, is introduced. The SimSchaake method aggregates univariately postprocessed ensemble forecasts using dependence patterns from past observations. Specifically, the observations are taken from historical dates at which the ensemble forecasts resembled the current ensemble prediction with respect to a specific similarity criterion. The SimSchaake ensemble outperforms all reference ensembles in an application to ensemble forecasts for 2-m temperature from the European Centre for Medium-Range Weather Forecasts.


2014 ◽  
Vol 1 (1) ◽  
pp. 917-952
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Goestationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), improving initial conditions, and partially improving WRF-NMM forecasts during several data assimilation cycles.


2016 ◽  
Vol 17 (10) ◽  
pp. 2591-2614 ◽  
Author(s):  
Vincent Vionnet ◽  
Ingrid Dombrowski-Etchevers ◽  
Matthieu Lafaysse ◽  
Louis Quéno ◽  
Yann Seity ◽  
...  

Abstract Numerical weather prediction (NWP) systems operating at kilometer scale in mountainous terrain offer appealing prospects for forecasting the state of snowpack in support of avalanche hazard warning, water resources assessment, and flood forecasting. In this study, daily forecasts of the NWP system Applications of Research to Operations at Mesoscale (AROME) at 2.5-km grid spacing over the French Alps were considered for four consecutive winters (from 2010/11 to 2013/14). AROME forecasts were first evaluated against ground-based measurements of air temperature, humidity, wind speed, incoming radiation, and precipitation. This evaluation shows a cold bias at high altitude partially related to an underestimation of cloud cover influencing incoming radiative fluxes. AROME seasonal snowfall was also compared against output from the Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) specially developed for alpine terrain. This comparison reveals that there are regions of significant difference between the two, especially at high elevation, and possible causes for these differences are discussed. Finally, AROME forecasts and SAFRAN reanalysis have been used to drive the snowpack model Surface Externalisée (SURFEX)/Crocus (SC) and to simulate the snowpack evolution over a 2.5-km grid covering the French Alps during four winters. When evaluated at the experimental site of Col de Porte, both simulations show good agreement with measurements of snow depth and snow water equivalent. At the scale of the French Alps, AROME-SC exhibits an overall positive bias, with the largest positive bias found in the northern and central French Alps. This study constitutes the first step toward the development of a distributed snowpack forecasting system using AROME.


2020 ◽  
Vol 20 (23) ◽  
pp. 15379-15387
Author(s):  
Wolfgang Woiwode ◽  
Andreas Dörnbrack ◽  
Inna Polichtchouk ◽  
Sören Johansson ◽  
Ben Harvey ◽  
...  

Abstract. Numerical weather forecast systems like the ECMWF IFS (European Centre for Medium-Range Weather Forecasts – Integrated Forecasting System) are known to be affected by a moist bias in the extratropical lowermost stratosphere (LMS) which results in a systematic cold bias there. We use high-spatial-resolution water vapor measurements by the airborne infrared limb-imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) during the PGS (POLSTRACC/GW-LCYCLE-II/SALSA) campaign to study the LMS moist bias in ECMWF analyses and 12 h forecasts from January to March 2016. Thereby, we exploit the two-dimensional observational capabilities of GLORIA, when compared to in situ observations, and the higher vertical and horizontal resolution, when compared to satellite observations. Using GLORIA observations taken during five flights in the polar sub-vortex region around Scandinavia and Greenland, we diagnose a systematic moist bias in the LMS exceeding +50 % (January) to +30 % (March) at potential vorticity levels from 10 PVU (∼ highest level accessed with suitable coverage) to 7 PVU. In the diagnosed time period, the moist bias decreases at the highest and driest air masses observed but clearly persists at lower levels until mid-March. Sensitivity experiments with more frequent temporal output, and lower or higher horizontal and vertical resolution, show the short-term forecasts to be practically insensitive to these parameters on timescales of < 12 h. Our results confirm that the diagnosed moist bias is already present in the initial conditions (i.e., the analysis) and thus support the hypothesis that the cold bias develops as a result of forecast initialization. The moist bias in the analysis might be explained by a model bias together with the lack of water vapor observations suitable for assimilation above the tropopause.


Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


2001 ◽  
Vol 8 (6) ◽  
pp. 357-371 ◽  
Author(s):  
D. Orrell ◽  
L. Smith ◽  
J. Barkmeijer ◽  
T. N. Palmer

Abstract. Operational forecasting is hampered both by the rapid divergence of nearby initial conditions and by error in the underlying model. Interest in chaos has fuelled much work on the first of these two issues; this paper focuses on the second. A new approach to quantifying state-dependent model error, the local model drift, is derived and deployed both in examples and in operational numerical weather prediction models. A simple law is derived to relate model error to likely shadowing performance (how long the model can stay close to the observations). Imperfect model experiments are used to contrast the performance of truncated models relative to a high resolution run, and the operational model relative to the analysis. In both cases the component of forecast error due to state-dependent model error tends to grow as the square-root of forecast time, and provides a major source of error out to three days. These initial results suggest that model error plays a major role and calls for further research in quantifying both the local model drift and expected shadowing times.


2013 ◽  
Vol 10 (1) ◽  
pp. 1289-1331 ◽  
Author(s):  
K. Liechti ◽  
L. Panziera ◽  
U. Germann ◽  
M. Zappa

Abstract. This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel probabilistic radar-based forecasting chains for flash-flood early warning are investigated in three catchments in the Southern Swiss Alps and set in relation to deterministic discharge forecast for the same catchments. The first probabilistic radar-based forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second probabilistic forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialized with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. We found a clear preference for the probabilistic approach. Discharge forecasts perform better when forced by NORA rather than by a persistent radar QPE for lead times up to eight hours and for all discharge thresholds analysed. The best results were, however, obtained with the REAL-C2 forecasting chain, which was also remarkably skilful even with the highest thresholds. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.


Author(s):  
Peter Düben ◽  
Nils Wedi ◽  
Sami Saarinen ◽  
Christian Zeman

&lt;p&gt;Global simulations with 1.45 km grid-spacing are presented that were performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Simulations are uncoupled (without ocean, sea-ice or wave model), using 62 or 137 vertical levels and the full complexity of weather forecast simulations including recent date initial conditions, real-world topography, and state-of-the-art physical parametrizations and diabatic forcing including shallow convection, turbulent diffusion, radiation and five categories for the water substance (vapour, liquid, ice, rain, snow). Simulations are evaluated with regard to computational efficiency and model fidelity. Scaling results are presented that were performed on the fastest supercomputer in Europe - Piz Daint (Top 500, Nov 2018). Important choices for the model configuration at this unprecedented resolution for the IFS are discussed such as the use of hydrostatic and non-hydrostatic equations or the time resolution of physical phenomena which is defined by the length of the time step.&amp;#160;&lt;/p&gt;&lt;p&gt;Our simulations indicate that the IFS model &amp;#8212; based on spectral transforms with a semi-implicit, semi-Lagrangian time-stepping scheme in contrast to more local discretization techniques &amp;#8212; can provide a meaningful baseline reference for O(1) km global simulations.&lt;/p&gt;


Author(s):  
Jonathan Zawislak ◽  
Robert F. Rogers ◽  
Sim D. Aberson ◽  
Ghassan J. Alaka ◽  
George Alvey ◽  
...  

AbstractSince 2005, NOAA has conducted the annual Intensity Forecasting Experiment (IFEX), led by scientists from the Hurricane Research Division at NOAA’s Atlantic Oceanographic andMeteorological Laboratory. They partner with NOAA’s Aircraft Operations Center, who maintain and operate the WP-3D and G-IV Hurricane Hunter aircraft, and NCEP’s National Hurricane Center and Environmental Modeling Center, who task airborne missions to gather data used by forecasters for analysis and forecasting and for ingest into operational numerical weather prediction models. The goal of IFEX is to improve tropical cyclone (TC) forecasts using an integrated approach of analyzing observations from aircraft, initializing and evaluating forecast models with those observations, and developing new airborne instrumentation and observing strategies targeted at filling observing gaps and maximizing the data’s impact in model forecasts. This summary article not only highlights recent IFEX contributions towards improved TC understanding and prediction, but also reflects more broadly on the accomplishments of the program during the 16 years of its existence. It describes how IFEX addresses high-priority forecast challenges, summarizes recent collaborations, describes advancements in observing systems monitoring structure and intensity, as well as in assimilation of aircraft data into operational models, and emphasizes key advances in understanding of TC processes, particularly those that lead to rapid intensification. The article concludes by laying the foundation for the “next generation” of IFEX as it broadens its scope to all TC hazards, particularly rainfall, storm-surge inundation, and tornadoes, that have gained notoriety during the last few years after several devastating landfalling TCs.


Sign in / Sign up

Export Citation Format

Share Document