scholarly journals Identifikasi Bakteri pada Rumput Laut Euchema spinosum yang terserang penyakit Ice-ice di Perairan Pantai Kutuh

2016 ◽  
Vol 2 (1) ◽  
pp. 11 ◽  
Author(s):  
Suprabadevi Ayumayasari Saraswati ◽  
I Made Sena Darmasetiyawana

The main causes of ice-ice disease that seaweed production will decline. Bacterial infections occur due to fluctuations in climate change resulted in a decrease in water quality resulting in the durability of seaweed. When seaweed stress will facilitate pathogen infection. Disease pathogens cause damage to internal organs. The spread of bacterial disease in seaweed is generally very fast and can lead to death, so that the loss caused by this disease is quite large. Ice-ice disease occurrence is seasonal and contagious, so the impact on the selling price low. The results showed that there are two types of pathogenic bacteria that can potentially cause disease in which bacteria Vibrio alginoliticus and Pseudomonas aeruginosa. Climate change affects the spatial distribution of micro seaweed bacterial pathogens.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathaniel B. Bone ◽  
Eugene J. Becker ◽  
Maroof Husain ◽  
Shaoning Jiang ◽  
Anna A. Zmijewska ◽  
...  

AbstractMetabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2−/− murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


2021 ◽  
Author(s):  
Chiara Cirillo ◽  
Antonello Bonfante ◽  
Giovanna Battipaglia ◽  
Angelita Gambuti ◽  
Sheridan Lois Woo ◽  
...  

<p>Climate change is one of the main challenges for future agriculture since it can severely affect plant growth and development. The Mediterranean area is one of the most vulnerable regions where climatic models have forecasted a significant increase in frequency and severity of drought events. Ongoing climate change is aggravating some critical issues in the production of the autochthonous grape variety Greco, widely cultivated in the Campania Region (southern Italy) and used alone or blend in many quality label wines.</p><p>Nowadays, there is a high risk for the economic sustainability of Greco cultivation due to the following main issues: reduced vine productivity, low selling price of grapes, and territory fragmentation. Such criticisms induce the abandonment of small/medium-sized farms due to either crop conversion or consolidation into larger farms.</p><p>The Greco variety may represent a study model to introduce innovative and integrated management of cultivation techniques, such as pruning and soil management, with the aim to resolve similar problems affecting other autochthonous regional cultivars. They include issues, such as low fertility, that cause an unbalanced ratio among sugars, acids, and affect grape metabolites important for the oxidative stability and sensory quality of wine.</p><p>The GREASE project, funded by Campania Region within the Rural Development Programme 2014-2020, falls within the framework of sustainable management of vineyards (from economic, environmental and social viewpoints) with an insight to climate change. The general objective to improve the potential production of Greco concerns the management of major cultivation practices in viticulture by the realization of a cultivar-specific model for vine canopy and soil management. Optimization of parameters is important in order to achieve a good vegetative and reproductive balance that enhances grape and wine quality, improves farm profitability and environmental sustainability. This project is conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Greco’ located in southern Italy (Feudi di San Gregorio farm).</p><p>The projects has 3 main inter-disciplinary actions: A1) to determine the effect of diverse vine pruning systems on plant resource use, through the reconstruction of vine eco-physiological history (dendro-anatomical and -isotopic analyses); A2-A3) to analyse the effect of soil management and of vine training systems on the continuum soil-plant-atmosphere system. Specific activities include: pedoclimatic, vegetative and reproductive, physiological and hydraulic characterization; microvinification and characterization of grapes and wine produced in the different trials; evaluation of resources use efficiency, pests, footprint family markers; model development.</p><p>The impact of the project on other wineries of the Campania Region will be significant due to an increased understanding of how cultivation systems influence the efficient use of available resources in the Greco vineyard. Such knowledge would be useful to design simple modifications to the presently used agronomical practices, to achieve production and economic gains without long-term structural investments. This know-how will also favour other downstream technologies and biotechnologies of viticulture and enology production, as well as the associated companies (e.g., producers of fertilizers, seeds for green manure) to realize products and services better adapted to the development of cultivar-specific viticultural and enological production systems.</p>


2020 ◽  
Vol 7 ◽  
pp. 65-78
Author(s):  
Narendra Bahadur Sing ◽  
Dipak Khanal ◽  
Laxmee Bhandari

Yarsagumba is an endoparasitic fungus growing on insect larvae found in the high Himalayan region of Nepal, which is a very expensive and better income source for local peoples. The study was conducted randomly selecting 80 households of two rural municipalities namely Talkot and Saipal who are involved in Yarsagumba collection to assess the impact of Yarsagumba on the livelihood of local people of Bajhang district. The surveyed result revealed that climate change has highly affected the harvesting of Yarsagumba. Its selling price is affected by market value fluctuation. Yarsagumba plays a significant role in the livelihood of the local peoples. The surveyed data comparing the last five years (2068 to 2072) shows that the highest income was found to be NRs. 139,200 per household per season in the year 2068. The market price, trade, and marketing channels of Yarsagumba are unclear and commercial trading takes place illegally because of fear of being charged higher taxes. The temperature and humidity play an important role in the abundance and formation of Yarsagumba. The study showed that 43.8% of respondents perceived change in temperature and rainfall pattern over 10 years, and 73.7% of respondents perceived that temperature and rainfall affected Yarsagumba collection.


2020 ◽  
Vol 21 ◽  
Author(s):  
Mohamad Fawzi Mahomoodally ◽  
Nabeelah Bibi Sadeer

: Pathogenic microorganisms should be considered as human number one foe as witnessed by recent outbreaks of coronavirus disease (COVID-19) and with bacteria no longer sensitive to existing antibiotics. The resistance of pathogenic bacteria and deaths attributable to bacterial infections is increasing exponentially. Bacteria used different mechanisms to counterattack to existing antibiotics namely (i) enzymatic inhibition, (ii) penicillin binding protein modification, (iii) porin mutations, (iv) efflux pumps and (v) molecular modifications of antibiotic targets. Developing new antibiotics would be time consuming to address such situation, thus one of the promising approaches is by potentiating existing antibiotics. Plants used synergism to naturally defend and protect themselves from microbes. Using the same strategy, several studies have shown that the combinations of natural products and antibiotics could effectively prolong the lifespan of existing antibiotics and minimize the impact and emergence of antibiotic resistance. Combining essential oils constituents namely uvaol, ferruginol, farnesol, carvacrol, with antibiotics have proved to be efficient efflux pump inhibitors. Plant-derived compounds such as gallic acid and tannic acid are effective potentiators of various antibiotics including novobiocin, chlorobiocin, coumermycin, fusidic acid, and rifampicin, resulting in a 4-fold increase in the potencies of these antibiotics. Several lines of research, as discussed in this review, have demonstrated the effectiveness of natural products in potentiating existing antibiotics. For this reason, the search for more efficient combinations should be an ongoing process with the aim to extend the life of the ones that we have and maybe preserve the life for the ones that is yet to come.


2008 ◽  
Vol 9 (2) ◽  
pp. 217-225 ◽  
Author(s):  
T. R. Callaway ◽  
T. S. Edrington ◽  
R. C. Anderson ◽  
R. B. Harvey ◽  
K. J. Genovese ◽  
...  

AbstractThe microbial population of the intestinal tract is a complex natural resource that can be utilized in an effort to reduce the impact of pathogenic bacteria that affect animal production and efficiency, as well as the safety of food products. Strategies have been devised to reduce the populations of food-borne pathogenic bacteria in animals at the on-farm stage. Many of these techniques rely on harnessing the natural competitive nature of bacteria to eliminate pathogens that negatively impact animal production or food safety. Thus feed products that are classified as probiotics, prebiotics and competitive exclusion cultures have been utilized as pathogen reduction strategies in food animals with varying degrees of success. The efficacy of these products is often due to specific microbial ecological factors that alter the competitive pressures experienced by the microbial population of the gut. A few products have been shown to be effective under field conditions and many have shown indications of effectiveness under experimental conditions and as a result probiotic products are widely used in all animal species and nearly all production systems. This review explores the ecology behind the efficacy of these products against pathogens found in food animals, including those that enter the food chain and impact human consumers.


2014 ◽  
Vol 1 (3) ◽  
pp. 3-7
Author(s):  
O. Zhukorskyy ◽  
O. Hulay

Aim. To estimate the impact of in vivo secretions of water plantain (Alisma plantago-aquatica) on the popula- tions of pathogenic bacteria Erysipelothrix rhusiopathiae. Methods. The plants were isolated from their natural conditions, the roots were washed from the substrate residues and cultivated in laboratory conditions for 10 days to heal the damage. Then the water was changed; seven days later the selected samples were sterilized using fi lters with 0.2 μm pore diameter. The dilution of water plantain root diffusates in the experimental samples was 1:10–1:10,000. The initial density of E. rhusiopathiae bacteria populations was the same for both experimental and control samples. The estimation of the results was conducted 48 hours later. Results. When the dilution of root diffusates was 1:10, the density of erysipelothrixes in the experimental samples was 11.26 times higher than that of the control, on average, the dilution of 1:100 − 6.16 times higher, 1:1000 – 3.22 times higher, 1:10,000 – 1.81 times higher, respectively. Conclusions. The plants of A. plantago-aquatica species are capable of affecting the populations of E. rhusiopathiae pathogenic bacteria via the secretion of biologically active substances into the environment. The consequences of this interaction are positive for the abovementioned bacteria, which is demon- strated by the increase in the density of their populations in the experiment compared to the control. The intensity of the stimulating effect on the populations of E. rhusiopathiae in the root diffusates of A. plantago-aquatica is re- ciprocally dependent on the degree of their dilution. The investigated impact of water plantain on erysipelothrixes should be related to the topical type of biocenotic connections, the formation of which between the test species in the ecosystems might promote maintaining the potential of natural focus of rabies. Keywords: Alisma plantago-aquatica, in vivo secretions, Erysipelothrix rhusiopathiae, population density, topical type of connections.


2020 ◽  
Author(s):  
Ansarullah ◽  
Ramli Rahim ◽  
Baharuddin Hamzah ◽  
Asniawaty Kusno ◽  
Muhammad Tayeb

Chicken feathers are the result of waste from slaughterhouses and billions ofkilograms of waste produced by various kinds of poultry processing. This hal is a veryserious problem for the environment because it causes the impact of pollution. Hasmany utilization of chicken feather waste such as making komocen, accessories,upholstery materials, making brackets to the manufacture of animal feed but from theresults of this activity cannot reduce the production of chicken feathers that hiscontinuously increase every year. This is due to the fact that the selling price of chickenmeat has been reached by consumers with middle to upper economic levels. This caneasily be a chicken menu in almost all restaurants and restaurants to the food stalls onthe side of the road. An alternative way of utilizing chicken feathers is to makecomposite materials in the form of panels. Recent studies have shown that the pvacmaterial can be utilized as a mixing and adhesive material with mashed or groundfeathered composites to form a panel that can later be used as an acoustic material.The test results show that the absorption of chicken feathers and pvac glue into panelscan absorb sound well with an absorption coefficient of 0.59, light. This result is veryeconomical so it is worth to be recommended as an acoustic material. Apart from theresults of research methods carried out is one of the environmentally friendly activitiesin particular the handling of waste problems


Sign in / Sign up

Export Citation Format

Share Document