scholarly journals Regional winds over the Iberian Peninsula with COSMO-REA6 high resolution regional reanalysis: cierzo, levante and poniente

2021 ◽  
Author(s):  
María Ortega ◽  
Enrique Sánchez ◽  
Claudia Gutiérrez ◽  
María Ofelia Molina

<p>Regional winds are caused by small-scale pressure differences in a way that important air flows can arise in a very small and specific region. Sometimes an orographic feature, such as a channel like the Ebro Valley or the Strait of Gibraltar, lead the wind, due to mass conservation, to acquire a certain specific range of directions and considerable speed. In the regions where they are observed, the wind is of great importance not only for the climatology and meteorology of these areas but also for their culture and identity. However, it is difficult to analyze them using the most common reanalysis products, since their spatial resolutions are not high enough to properly describe the orographic characteristics that lead to the regional winds in specific locations. Here, we will explore the application of the COSMO-REA6 high resolution reanalysis system for the assessment of the main regional winds in the Iberian Peninsula: the cierzo wind in the Ebro Valley and the levante and poniente winds in the Strait of Gibraltar, for the 2000-2018 period. COSMO-REA6 uses a spatial resolution of 6 km (0.055º), which is much larger than previous reanalysis and regional modelling databases, so it can better capture the orography of the areas and therefore the regional winds we intend to study. The cierzo, levante and poniente winds are very relevant in the Iberian Peninsula due to their intensity and their frequency. Defined with a 5 m/s threshold for each hour, and their specific direction range, around 95, 150 and 110 wind days per year are obtained, respectively. Their study may also be important for other reasons, such as the production of renewable energy in these areas. First, we conduct a preliminary assessment of wind speed and direction with hourly data from weather stations, which have been obtained from the HadISD global sub-daily dataset. Then, we compare data from stations with COSMO-REA6 reanalysis in each location and produce a spatial description of the reanalysis in the Peninsula. We also study the atmospheric patterns associated with the regional winds characterized above. Due to the few studies that have been carried out on regional winds in the Iberian Peninsula, these results can be of great interest for various fields, such as meteorology, climatology and the generation of renewable energy.</p>

2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2192
Author(s):  
Robert J. Brecha ◽  
Katherine Schoenenberger ◽  
Masaō Ashtine ◽  
Randy Koon Koon

Many Caribbean island nations have historically been heavily dependent on imported fossil fuels for both power and transportation, while at the same time being at an enhanced risk from the impacts of climate change, although their emissions represent a very tiny fraction of the global total responsible for climate change. Small island developing states (SIDSs) are among the leaders in advocating for the ambitious 1.5 °C Paris Agreement target and the transition to 100% sustainable, renewable energy systems. In this work, three central results are presented. First, through GIS mapping of all Caribbean islands, the potential for near-coastal deep-water as a resource for ocean thermal energy conversion (OTEC) is shown, and these results are coupled with an estimate of the countries for which OTEC would be most advantageous due to a lack of other dispatchable renewable power options. Secondly, hourly data have been utilized to explicitly show the trade-offs between battery storage needs and dispatchable renewable sources such as OTEC in 100% renewable electricity systems, both in technological and economic terms. Finally, the utility of near-shore, open-cycle OTEC with accompanying desalination is shown to enable a higher penetration of renewable energy and lead to lower system levelized costs than those of a conventional fossil fuel system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo Mayoral ◽  
Ignacio Díaz-Martínez ◽  
Jéremy Duveau ◽  
Ana Santos ◽  
Antonio Rodríguez Ramírez ◽  
...  

AbstractHere, we report the recent discovery of 87 Neandertal footprints on the Southwest of the Iberian Peninsula (Doñana shoreline, Spain) located on an upper Pleistocene aeolian littoral setting (about 106 ± 19 kyr). Morphometric comparisons, high resolution digital photogrammetric 3D models and detailed sedimentary analysis have been provided to characterized the footprints and the palaeoenvironment. The footprints were impressed in the shoreline of a hypersaline swamped area related to benthic microbial mats, close to the coastline. They have a rounded heel, a longitudinal arch, relatively short toes, and adducted hallux, and represent the oldest upper Pleistocene record of Neandertal footprints in the world. Among these 87 footprints, 31 are longitudinally complete and measure from 14 to 29 cm. The calculated statures range from 104 to 188 cm, with half of the data between 130 and 150 cm. The wide range of sizes of the footprints suggests the existence of a social group integrated by individuals of different age classes but dominated, however, by non-adult individuals. The footprints, which are outside the flooded area are oriented perpendicular to the shoreline. These 87 footprints reinforce the ecological scenario of Neandertal groups established in coastal areas.


2019 ◽  
Vol 15 (S359) ◽  
pp. 312-317
Author(s):  
Francoise Combes

AbstractGas fueling AGN (Active Galaxy Nuclei) is now traceable at high-resolution with ALMA (Atacama Large Millimeter Array) and NOEMA (NOrthern Extended Millimeter Array). Dynamical mechanisms are essential to exchange angular momentum and drive the gas to the super-massive black hole. While at 100pc scale, the gas is sometimes stalled in nuclear rings, recent observations reaching 10pc scale (50mas), may bring smoking gun evidence of fueling, within a randomly oriented nuclear gas disk. AGN feedback is also observed, in the form of narrow and collimated molecular outflows, which point towards the radio mode, or entrainment by a radio jet. Precession has been observed in a molecular outflow, indicating the precession of the radio jet. One of the best candidates for precession is the Bardeen-Petterson effect at small scale, which exerts a torque on the accreting material, and produces an extended disk warp. The misalignment between the inner and large-scale disk, enhances the coupling of the AGN feedback, since the jet sweeps a large part of the molecular disk.


2004 ◽  
Vol 22 (1) ◽  
pp. 169-182 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman ◽  
L. J. Baddeley ◽  
J. A. Davies ◽  
R. S. Dhillon ◽  
...  

Abstract. The EISCAT high power heating facility at Tromsø, northern Norway, has been utilised to generate artificial radar backscatter in the fields of view of the CUTLASS HF radars. It has been demonstrated that this technique offers a means of making very accurate and high resolution observations of naturally occurring ULF waves. During such experiments, the usually narrow radar spectral widths associated with artificial irregularities increase at times when small scale-sized (high m-number) ULF waves are observed. Possible mechanisms by which these particle-driven high-m waves may modify the observed spectral widths have been investigated. The results are found to be consistent with Pc1 (ion-cyclotron) wave activity, causing aliasing of the radar spectra, in agreement with previous modelling work. The observations also support recent suggestions that Pc1 waves may be modulated by the action of longer period ULF standing waves, which are simultaneously detected on the magnetospheric field lines. Drifting ring current protons with energies of ∼ 10keV are indicated as a common plasma source population for both wave types. Key words. Magnetospheric physics (MHD waves and instabilities) – Space plasma physics (wave-particle interactions) – Ionosphere (active experiments)


Solar Physics ◽  
1996 ◽  
Vol 164 (1-2) ◽  
pp. 303-310 ◽  
Author(s):  
F. Kneer ◽  
F. Stolpe

2011 ◽  
Vol 4 (1) ◽  
pp. 67-88 ◽  
Author(s):  
G. J. Marseille ◽  
K. Houchi ◽  
J. de Kloe ◽  
A. Stoffelen

Abstract. The definition of an atmospheric database is an important component of simulation studies in preparation of future earth observing remote sensing satellites. The Aeolus mission, formerly denoted Atmospheric Dynamics Mission (ADM) or ADM-Aeolus, is scheduled for launch end of 2013 and aims at measuring profiles of single horizontal line-of-sight (HLOS) wind components from the surface up to about 32 km with a global coverage. The vertical profile resolution is limited but may be changed during in-orbit operation. This provides the opportunity of a targeted sampling strategy, e.g., as a function of geographic region. Optimization of the vertical (and horizontal) sampling strategy requires a characterization of the atmosphere optical and dynamical properties, more in particular the distribution of atmospheric particles and their correlation with the atmospheric dynamics. The Aeolus atmospheric database combines meteorological data from the ECMWF model with atmosphere optical properties data from CALIPSO. An inverse algorithm to retrieve high-resolution particle backscatter from the CALIPSO level-1 attenuated backscatter product is presented. Global weather models tend to underestimate atmospheric wind variability. A procedure is described to ensure compatibility of the characteristics of the database winds with those from high-resolution radiosondes. The result is a high-resolution database of zonal, meridional and vertical wind, temperature, specific humidity and particle and molecular backscatter and extinction at 355 nm laser wavelength. This allows the simulation of small-scale atmospheric processes within the Aeolus observation sampling volume and their impact on the quality of the retrieved HLOS wind profiles. The database extends over four months covering all seasons. This allows a statistical evaluation of the mission components under investigation. The database is currently used for the development of the Aeolus wind processing, the definition of wind calibration strategies and the optimization of the Aeolus sampling strategy.


Sign in / Sign up

Export Citation Format

Share Document