scholarly journals Comparison of ERA-5 reanalysis and observed cloud cover in the high Arctic

2021 ◽  
Author(s):  
Sven-Erik Gryning ◽  
Ekaterina Batchvarova ◽  
Rogier Floors ◽  
Christoph Münkel ◽  
Henrik Skov ◽  
...  

<p>Knowledge and understanding of Arctic cloud properties is important for climate predictions and weather forecasts but limited because of scarcity of observational data on Arctic clouds in general and especially during the dark winter season. Prediction of clouds is known to be a major challenge in numerical weather forecasts and climate models  and the shortage of observations for use in data-assimilation in the Arctic constitutes a further difficulty.</p><p>We present results from an analyses of cloud cover based on profiles of the attenuated backscatter coefficient from an 8-year long data series (July 2011 – April 2019). The observations are carried out in the high Arctic by a ceilometer with a maximum range setting of 7.7 km from the Villum Research Station at Station Nord, Greenland. Results show that the hourly cloud cover turned out to follow a U-shaped rather than Gaussian-like distribution.</p><p>Annual and seasonal cloud cover variation is illustrated. The cloud cover is larger during the autumn and winter as compared to summer and spring. The cloud cover exhibits a substantial variation from year to year without a clear trend. The cloud cover during spring is low and decreasing between 2012 and 2017. The cloud cover during the autumn of 2016 is lowest compared to the other years.</p><p>The observed cloud cover is compared to the cloud cover provided in the ERA5 reanalysis data-set. The cloud cover for low clouds and medium clouds are combined to represent a total height of 6 km. Both the observed and modelled cloud cover is larger during winter as compared to summer-time cloud cover. The measured reduction in the cloud cover for the autumn of 2016 is present in the reanalysis data as well but the measured low cloud cover during spring is not apparent in the reanalysis data.</p><p>The ability of the ERA-5 reanalysis data to predict the observed cloud cover was investigated. Because the cloud cover distribution is U-shaped rather than of a Gaussian nature, standard metrics are not applicable. We apply a generalized skill score that is developed for contingency tables or joint histograms. Three skill scores were calculated. It was found that for all three methods, skills for the predictability of the cloud cover by the ERA5 modelling is better for winter than summer and is poor during the spring.</p>

2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2020 ◽  
Author(s):  
Yee Jun Tham ◽  
Nina Sarnela ◽  
Carlos A. Cuevas ◽  
Iyer Siddharth ◽  
Lisa Beck ◽  
...  

<p>Atmospheric halogens chemistry like the catalytic reaction of bromine and chlorine radicals with ozone (O<sub>3</sub>) has been known to cause the springtime surface-ozone destruction in the polar region. Although the initial atmospheric reactions of chlorine with ozone are well understood, the final oxidation steps leading to the formation of chlorate (ClO<sub>3</sub><sup>-</sup>) and perchlorate (ClO<sub>4</sub><sup>-</sup>) remain unclear due to the lack of direct evidence of their presence and fate in the atmosphere. In this study, we present the first high-resolution ambient data set of gas-phase HClO<sub>3</sub> (chloric acid) and HClO<sub>4</sub> (perchlorate acid) obtained from the field measurement at the Villum Research Station, Station Nord, in high arctic North Greenland (81°36’ N, 16°40’ W) during the spring of 2015. A state-of-the-art chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF) was used in negative ion mode with nitrate ion as the reagent ion to detect the gas-phase HClO<sub>3</sub> and HClO<sub>4</sub>. We measured significant level of HClO<sub>3</sub> and HClO<sub>4</sub> only during the springtime ozone depletion events in the Greenland, with concentration up to 9x10<sup>5</sup> molecule cm<sup>-3</sup>. Air mass trajectory analysis shows that the air during the ozone depletion event was confined to near-surface, indicating that the O<sub>3</sub> and surface of sea-ice/snowpack may play important roles in the formation of HClO<sub>3</sub> and HClO<sub>4</sub>. We used high-level quantum-chemical methods to calculate the ultraviolet-visible absorption spectra and cross-section of HClO<sub>3</sub> and HClO<sub>4</sub> in the gas-phase to assess their fates in the atmosphere. Overall, our results reveal the presence of HClO<sub>3</sub> and HClO<sub>4</sub> during ozone depletion events, which could affect the chlorine chemistry in the Arctic atmosphere.</p>


2021 ◽  
Author(s):  
Richard Blender ◽  
Alexia Karwat ◽  
Christian Franzke

<p>Extratropical cyclones are the primary natural hazards affecting Europe. With the release of ERA5 reanalysis data from 1950-1978 by the European Centre for Medium-Range Weather Forecasts (ECMWF), new opportunities have arisen to investigate mid-latitude cyclones in terms of climatic features and trends in longer and higher resolution. We analyze cyclones by nearest neighbor search in 1000 hPa geopotential height minima in different high resolutions for different minimum life-times. We find an intensification of North Atlantic cyclones in 1950-2019. Short-lived cyclones grow in radius and depth. In the Mediterranean, however, long-lived cyclones have weakened; but traveled also further in 1950-2019. Additionally, we illustrate relations between cyclone tracks, radii and correlated weather and climate extremes.</p>


2019 ◽  
Vol 19 (11) ◽  
pp. 7377-7395 ◽  
Author(s):  
Manuel Dall'Osto ◽  
David C. S. Beddows ◽  
Peter Tunved ◽  
Roy M. Harrison ◽  
Angelo Lupi ◽  
...  

Abstract. Aerosols are an integral part of the Arctic climate system due to their direct interaction with radiation and indirect interaction through cloud formation. Understanding aerosol size distributions and their dynamics is crucial for the ability to predict these climate relevant effects. When of favourable size and composition, both long-range-transported – and locally formed particles – may serve as cloud condensation nuclei (CCN). Small changes of composition or size may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. We present a cluster analysis of particle size distributions (PSDs; size range 8–500 nm) simultaneously collected from three high Arctic sites during a 3-year period (2013–2015). Two sites are located in the Svalbard archipelago: Zeppelin research station (ZEP; 474 m above ground) and the nearby Gruvebadet Observatory (GRU; about 2 km distance from Zeppelin, 67 m above ground). The third site (Villum Research Station at Station Nord, VRS; 30 m above ground) is 600 km west-northwest of Zeppelin, at the tip of north-eastern Greenland. The GRU site is included in an inter-site comparison for the first time. K-means cluster analysis provided eight specific aerosol categories, further combined into broad PSD classes with similar characteristics, namely pristine low concentrations (12 %–14 % occurrence), new particle formation (16 %–32 %), Aitken (21 %–35 %) and accumulation (20 %–50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site GRU shows PSDs with lower ultrafine-mode aerosol concentrations during summer but higher accumulation-mode aerosol concentrations during winter, relative to the Svalbard sites. By association with chemical composition and cloud condensation nuclei properties, further conclusions can be derived. Three distinct types of accumulation-mode aerosol are observed during winter months. These are associated with sea spray (largest detectable sizes, >400 nm), Arctic haze (main mode at 150 nm) and aged accumulation-mode (main mode at 220 nm) aerosols. In contrast, locally produced particles, most likely of marine biogenic origin, exhibit size distributions dominated by the nucleation and Aitken mode during summer months. The obtained data and analysis point towards future studies, including apportioning the relative contribution of primary and secondary aerosol formation processes and elucidating anthropogenic aerosol dynamics and transport and removal processes across the Greenland Sea. In order to address important research questions in the Arctic on scales beyond a singular station or measurement events, it is imperative to continue strengthening international scientific cooperation.


2015 ◽  
Vol 15 (16) ◽  
pp. 9681-9692 ◽  
Author(s):  
A. Massling ◽  
I. E. Nielsen ◽  
D. Kristensen ◽  
J. H. Christensen ◽  
L. L. Sørensen ◽  
...  

Abstract. Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both EBC/BC and sulfate was observed. Also, the correlation between BC and sulfate concentrations was confirmed based on the model results observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.74. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor, albeit significant source.


2021 ◽  
Vol 21 (17) ◽  
pp. 13287-13309
Author(s):  
Jakob Boyd Pernov ◽  
Bjarne Jensen ◽  
Andreas Massling ◽  
Daniel Charles Thomas ◽  
Henrik Skov

Abstract. While much research has been devoted to the subject of gaseous elemental mercury (GEM) and gaseous oxidized mercury (GOM) in the Arctic spring during atmospheric mercury depletion events, few studies have examined the behavior of GOM in the High Arctic summer. GOM, once deposited and incorporated into the ecosystem, can pose a threat to human and wildlife health, though there remain large uncertainties regarding the transformation, deposition, and assimilation of mercury into the food web. Therefore, to further our understanding of the dynamics of GOM in the High Arctic during the late summer, we performed measurements of GEM and GOM, along with meteorological parameters and atmospheric constituents, and utilized modeled air mass history during two summer campaigns in 2019 and 2020 at Villum Research Station (Villum) in northeastern Greenland. Seven events of enhanced GOM concentrations were identified and investigated in greater detail. In general, the common factors associated with event periods at ground level were higher levels of radiation and lower H2O mixing ratios, accumulated precipitation, and relative humidity (RH), although none were connected with cold temperatures. Non-event periods at ground level each displayed a different pattern in one or more parameters when compared to event periods. Generally, air masses during event periods for both campaigns were colder and drier, arrived from higher altitudes, and spent more time above the mixed layer and less time in a cloud compared to non-events, although some events deviated from this general pattern. Non-event air masses displayed a different pattern in one or more parameters when compared to event periods, although they were generally warmer and wetter and arrived from lower altitudes with little radiation. Coarse-mode aerosols were hypothesized to provide the heterogenous surface for halogen propagation during some of the events, while for others the source is unknown. While these general patterns were observed for event and non-event periods, analysis of individual events showed more specific origins. Five of the seven events were associated with air masses that experienced similar conditions: transported from the cold, dry, and sunlit free troposphere. However, two events experienced contrasting conditions, with air masses being warm and wet with surface layer contact under little radiation. Two episodes of extremely high levels of NCoarse and BC, which appear to originate from flaring emissions in Russia, did not contribute to enhanced GOM levels. This work aims to provide a better understanding of the dynamics of GOM during the High Arctic summer.


2017 ◽  
Author(s):  
Christiane Voigt ◽  
Andreas Dörnbrack ◽  
Martin Wirth ◽  
Silke M. Groß ◽  
Michael C. Pitts ◽  
...  

Abstract. Low planetary wave activity led to a stable vortex with exceptionally cold temperatures in the 2015/2016 Arctic winter. Extended areas with temperatures below the ice frost point Tice persisted over weeks in the Arctic stratosphere as derived from the 36-years temperature climatology of the ERA-Interim reanalysis data set of the European Center for Medium Range Weather Forecast ECMWF. These extreme conditions promoted the formation of widespread polar stratospheric ice clouds (ice PSCs). The space-borne Cloud-Aerosol Lidar with Orthogonal Polarization CALIOP instrument onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) continuously measured ice PSCs for about a month with maximum extensions of up to 2 × 106 km2 in the stratosphere. On 22 January 2016, the WALES (Water Vapor Lidar Experiment in Space – airborne demonstrator) lidar onboard the High Altitude and Long Range Research Aircraft HALO detected an ice PSC with a horizontal length of more than 1400 km. The ice PSC extended between 18 and 24 km altitude and was surrounded by nitric acid trihydrate (NAT) particles, supercooled ternary solution (STS) droplets and particle mixtures. The ice PSC occurrence in the backscatter ratio to depolarization optical space spanned by WALES observations is best matched by defining the inverse backscatter ratio of 0.3 as 1/Rice|NAT threshold between ice and NAT cloud regions. In addition, the histogram clearly shows two distinct branches in ice PSC occurrence, indicative for two ice formation pathways. In addition to ice nucleation in STSm with meteoric dust inclusions, ice nucleation on pre-existing NAT may play a role in the Arctic winter 2015/2016. This hypothesis is supported by differences in the ECMWF trajectory analysis for the two ice branches. The observation of widespread Arctic ice PSCs can advance our understanding of ice nucleation in cold polar and tropical latitudes. It further provides a new observational data base for the parameterization of ice nucleation schemes in atmospheric models.


2019 ◽  
Author(s):  
Tomasz Wawrzyniak ◽  
Marzena Osuch

Abstract. The article presents the climatological dataset from the Polish Polar Station Hornsund located in the SW part of Spitsbergen - the biggest island of the Svalbard Archipelago. Due to a general lack of long-term in situ measurements and observations, the high Arctic remains one of the largest climate‐data deficient regions on the Earth, so described series is of unique value. To draw conclusions on the climatic changes in the Arctic, it is necessary to analyse the long-term series of continuous, systematic, in situ observations from different locations and comparing the corresponding data, rather than rely on the climatic simulations only. In recent decades, rapid environmental changes occurring in the Atlantic sector of the Arctic are reflected in the data series collected by the operational monitoring conducted at the Hornsund Station. We demonstrate the results of the 40 years-long series of observations. Climatological mean values or totals are given, and we also examined the variability of meteorological variables at monthly and annual scale using the modified Mann-Kendall test for trend and Sen’s method. The relevant daily, monthly, and annual data are provided on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.909042, Wawrzyniak and Osuch, 2019).


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Miloš Lompar ◽  
Branislava Lalić ◽  
Ljiljana Dekić ◽  
Mina Petrić

Missing data in hourly and daily temperature data series is a common problem in long-term data series and many observational networks. Agricultural and environmental models and climate-related tools can be used only if weather data series are complete. To support user communities, a technique for gap filling is developed based on the debiasing of ERA5 reanalysis data, the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate. The debiasing procedure includes in situ measured temperature. The methodology is tested for different landscapes, latitudes, and altitudes, including tropical and midlatitudes. An evaluation of results in terms of root mean square error (RMSE) obtained using hourly and daily data is provided. The study shows very low average RMSE for all gap lengths ranging from 1.1 °C (Montecristo, Italy) to 1.9 °C (Gumpenstein, Austria).


2019 ◽  
Vol 19 (15) ◽  
pp. 10239-10256 ◽  
Author(s):  
Ingeborg E. Nielsen ◽  
Henrik Skov ◽  
Andreas Massling ◽  
Axel C. Eriksson ◽  
Manuel Dall'Osto ◽  
...  

Abstract. There are limited measurements of the chemical composition, abundance and sources of atmospheric particles in the High Arctic To address this, we report 93 d of soot particle aerosol mass spectrometer (SP-AMS) data collected from 20 February to 23 May 2015 at Villum Research Station (VRS) in northern Greenland (81∘36′ N). During this period, we observed the Arctic haze phenomenon with elevated PM1 concentrations ranging from an average of 2.3, 2.3 and 3.3 µg m−3 in February, March and April, respectively, to 1.2 µg m−3 in May. Particulate sulfate (SO42-) accounted for 66 % of the non-refractory PM1 with the highest concentration until the end of April and decreasing in May. The second most abundant species was organic aerosol (OA) (24 %). Both OA and PM1, estimated from the sum of all collected species, showed a marked decrease throughout May in accordance with the polar front moving north, together with changes in aerosol removal processes. The highest refractory black carbon (rBC) concentrations were found in the first month of the campaign, averaging 0.2 µg m−3. In March and April, rBC averaged 0.1 µg m−3 while decreasing to 0.02 µg m−3 in May. Positive matrix factorization (PMF) of the OA mass spectra yielded three factors: (1) a hydrocarbon-like organic aerosol (HOA) factor, which was dominated by primary aerosols and accounted for 12 % of OA mass, (2) an Arctic haze organic aerosol (AOA) factor and (3) a more oxygenated marine organic aerosol (MOA) factor. AOA dominated until mid-April (64 %–81 % of OA), while being nearly absent from the end of May and correlated significantly with SO42-, suggesting the main part of that factor is secondary OA. The MOA emerged late at the end of March, where it increased with solar radiation and reduced sea ice extent and dominated OA for the rest of the campaign until the end of May (24 %–74 % of OA), while AOA was nearly absent. The highest O∕C ratio (0.95) and S∕C ratio (0.011) was found for MOA. Our data support the current understanding that Arctic aerosols are highly influenced by secondary aerosol formation and receives an important contribution from marine emissions during Arctic spring in remote High Arctic areas. In view of a changing Arctic climate with changing sea-ice extent, biogenic processes and corresponding source strengths, highly time-resolved data are needed in order to elucidate the components dominating aerosol concentrations and enhance the understanding of the processes taking place.


Sign in / Sign up

Export Citation Format

Share Document