scholarly journals Drought in a changing climate – a pan-European view

2021 ◽  
Author(s):  
Lena M. Tallaksen

<p>Hydro-climatic extremes occur on different spatial and temporal scales, ranging from local, short term events, such as heavy storms and flash floods, to large-scale (regional to continental scale), long duration (weeks to years) events, such as drought and heat waves. Extremes affect every aspect of our society and to meet the societal need for preparedness and hazard management, the research community is challenged by underlying, critical science questions, including the need for improved knowledge on governing processes in a changing climate. In 2018, northern and parts of central Europe experienced a severe summer drought and record-breaking, persistent high temperatures led to severe impacts across a wide range of sectors. Wild fires destroyed vast areas in northern Europe, and the drought led to significant impacts on agricultural production and terrestrial ecosystems. Record low river levels disrupted inland waterways and low groundwater levels led to regional water restrictions. As illustrated by the 2018 event, drought effects all components of the hydrological cycle as it propagates from its origin as a meteorological anomaly, to a deficit in soil moisture and finally - if sustained - to below normal streamflow and groundwater levels (hydrological drought). Furthermore, a drying soil affects the partitioning of latent and sensible heat at the land surface, leading to higher air temperatures and thus, a reinforcement of the warming signal (positive feedback). Due to the diverse nature of drought, a large number of drought indicators exists, representing different time scales and type of drought. Simple indices may not be sufficient when applied to the complex and cumulative nature of drought. Often it is a combination of variables or events that leads to extreme drought impacts (compound event). A better understanding of the links between physical drought indicators and key drivers of drought is vital for drought prediction, whereas a better understanding of the links between physical indicators and drought impacts is critical to improve drought preparedness and support drought mitigation. This presentation highlights key achievements in drought research with a special emphasis on the identification of drought events, detection of recent changes, and our ability to model drought, including their spatial and temporal footprint. Focus is on Europe, and it will start introducing some recent extreme drought events – their main drivers, key characteristics, and wider environmental and societal impacts, and will close with an assessment of what the future may bring.</p>

2017 ◽  
Vol 21 (9) ◽  
pp. 4747-4765 ◽  
Author(s):  
Clara Linés ◽  
Micha Werner ◽  
Wim Bastiaanssen

Abstract. The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation–anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the stronger correlations. Overall, the results confirm remote sensing products' ability to anticipate reported drought impacts and therefore appear as a useful source of information to support drought management decisions.


2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


2016 ◽  
Vol 846 ◽  
pp. 42-47
Author(s):  
J. Busse ◽  
S. Galindo Torres ◽  
Alexander Scheuermann ◽  
L. Li ◽  
D. Bringemeier

Coal mining raises a number of environmental and operational challenges, including the impact of changing groundwater levels and flow patterns on adjacent aquifer and surface water systems. Therefore it is of paramount importance to fully understand the flow of water and gases in the geological system on all scales. Flow in coal seams takes place on a wide range of scales from large faults and fractures to the micro-structure of a porous matrix intersected by a characteristic cleat network. On the micro-scale these cleats provide the principal source of permeability for fluid and gas flow. Description of the behaviour of the flow within the network is challenging due to the variations in number, sizing, orientation, aperture and connectivity at a given site. This paper presents a methodology to simulate flow and investigate the permeability of fractured media. A profound characterization of the geometry of the cleat network in micrometer resolution can be derived by CT-scans. The structural information is fed into a Lattice Boltzmann Method (LBM) based model that allows the implementation of virtual flow experiments. With the application of suitable hydraulic boundary conditions the full permeability tensor can be calculated in 3D.


2018 ◽  
Author(s):  
Collin B. Edwards ◽  
Louie Yang

AbstractSeveral studies have documented a global pattern of phenological advancement that is consistent with ongoing climate change. However, the magnitude of these phenological shifts is highly variable across taxa and locations. This variability of phenological responses has been difficult to explain mechanistically. To examine how the evolution of multi-trait cueing strategies could produce variable responses to climate change, we constructed a model in which organisms evolve strategies that integrate multiple environmental cues to inform anticipatory phenological decisions. We simulated the evolution of phenological cueing strategies in multiple environments, using historic climate data from 78 locations in North America and Hawaii to capture features of climatic correlation structures in the real world. Organisms in our model evolved diverse strategies that were spatially autocorrelated across locations on a continental scale, showing that similar strategies tend to evolve in similar climates. Within locations, organisms often evolved a wide range of strategies that showed similar response phenotypes and fitness outcomes under historical conditions. However, these strategies responded differently to novel climatic conditions, with variable fitness consequences. Our model shows how the evolution of phenological cueing strategies can explain observed variation in phenological shifts and unexpected responses to climate change.


2015 ◽  
Vol 16 (4) ◽  
pp. 1502-1520 ◽  
Author(s):  
Elizabeth A. Clark ◽  
Justin Sheffield ◽  
Michelle T. H. van Vliet ◽  
Bart Nijssen ◽  
Dennis P. Lettenmaier

Abstract A common term in the continental and oceanic components of the global water cycle is freshwater discharge to the oceans. Many estimates of the annual average global discharge have been made over the past 100 yr with a surprisingly wide range. As more observations have become available and continental-scale land surface model simulations of runoff have improved, these past estimates are cast in a somewhat different light. In this paper, a combination of observations from 839 river gauging stations near the outlets of large river basins is used in combination with simulated runoff fields from two implementations of the Variable Infiltration Capacity land surface model to estimate continental runoff into the world’s oceans from 1950 to 2008. The gauges used account for ~58% of continental areas draining to the ocean worldwide, excluding Greenland and Antarctica. This study estimates that flows to the world’s oceans globally are 44 200 (±2660) km3 yr−1 (9% from Africa, 37% from Eurasia, 30% from South America, 16% from North America, and 8% from Australia–Oceania). These estimates are generally higher than previous estimates, with the largest differences in South America and Australia–Oceania. Given that roughly 42% of ocean-draining continental areas are ungauged, it is not surprising that estimates are sensitive to the land surface and hydrologic model (LSM) used, even with a correction applied to adjust for model bias. The results show that more and better in situ streamflow measurements would be most useful in reducing uncertainties, in particular in the southern tip of South America, the islands of Oceania, and central Africa.


2021 ◽  
Author(s):  
Sarra Kchouk ◽  
Pieter van Oel ◽  
Lieke Melsen

<p>Drought Early Warning Systems (DEWS) and Drought Monitoring Systems (DMS) are the principal tools used to tackle drought at an early stage and reduce the possibility of harm or loss. They are based on the use of drought indicators attributed to either : meteorological, agricultural and hydrological drought. This means that it is mostly hydro-climatic variables that are used to determine the onset, end and severity of a drought.  Drought impacts are rarely continuously monitored or even not included in DEWS and DMS. In this configuration, the likelihood of experiencing impacts is linearly linked to the severity of climatic features only. The aim of our study is to question the direct linkage between the delivery of hydro-climatic information and the detection of drought impacts and their severity. We reviewed scientific literature on drought drivers and impacts and analyzed how these two compare. We conducted a bibliometric analysis based on 4000+ scientific studies sorted by geographic area in which selected (i) drought indicators and (ii) impacts of drought were mentioned. Our review points toward an attachment to a conceptual view of drought by the main and broader use of meteorological (computed and remotely sensed) drought indicators. Studies reporting impacts related to food and water securities are more localized, respectively in Sub-Saharan Africa and Australasia. This mismatch suggests a tendency to translate hydroclimatic indicators of drought directly into impacts while neglecting relevant local contextual information. With the aim of sharpening the information provided by DEWS and DMS, we argue in favor of an additional consideration of drought indicators oriented towards the SDGs.</p>


Author(s):  
Fonna Forman ◽  
Veerabhadran Ramanathan

With unchecked emissions of pollutants, global warming is projected to increase to 1.50C within 15 years; to 20C within 35 years and 40C by 2100. These projections are central values with a small (<5%) probability that warming by 2100 can exceed 60C with potentially catastrophic impacts on every human being, living and yet unborn. Climate is already changing in perceptible ways through floods, droughts, wildfires, heat waves and sea level rise, displacing communities and catalyzing migration. Climate migration describes the voluntary and forced movement of people within and across habitats due to changes in climate. While estimates vary from 25 million to as many as one billion climate change migrants by 2050, achieving reliable quantitative estimates of future climate migration faces forbidding obstacles due to: 1) a wide range of projected warming due to uncertainties in climate feedbacks; 2) the lack of a settled definition for climate migration; and 3) the causal complexity of migration due to variability in non-environmental factors such as bioregion, culture, economics, politics and individual factors. But waiting for reliable estimates this creates unacceptable ethical risks. Therefore, we advocate a probabilistic approach to climate migration that accounts for both central and low probability warming projections as the only ethical response to the unfolding crisis. We conclude that in the absence of drastic mitigation actions, climate change-induced mass migration can become a major threat during the latter half of this century.


2004 ◽  
Vol 31 (5) ◽  
pp. 423 ◽  
Author(s):  
Philip K. Groom

Tree and shrub species of the Banksia woodlands on the sandplains of northern Swan Coastal Plain, Western Australia possess a range of strategies to avoid or tolerate soil water deficits during the annual summer drought. Shallow-rooted shrub species (< 1 m rooting depth) inhabit a range of locations in the landscape, from top of dune crests to wetland embankments. These are the most drought-tolerant of all sandplain species, surviving extremely low summer soil water potentials (< –7 MPa) and tissue water deficits by significantly reducing their transpirational water loss (< 0.2 mmol m–2 s–1). This is in contrast to the few shallow-rooted species restricted to low-lying or seasonally waterlogged areas which are reliant on subsurface soil moisture or groundwater to maintain their relatively high summer water use. Recent studies of water source usage of selected Banksia tree species have shown that these deep-rooted species access groundwater up to a maximum depth of 9 m depth during the summer months, or soil moisture at depth when groundwater was greater than maximum rooting depths, depending on the species. Medium- and deep-rooted (1–2 m and > 2 m, respectively) shrub species cope with the summer soil drying phase and related decrease in groundwater levels by conserving leaf water loss and incurring predawn water potentials between –1 and –4 MPa, enabling them to occur over a range of topographic positions within the sandplain landscape.


Sign in / Sign up

Export Citation Format

Share Document