Characterizing HDS209458b and HD189733b with combined High and Low Resolution Spectroscopy

2020 ◽  
Author(s):  
Joe Zalesky ◽  
Michael Line ◽  
Matteo Brogi

<p>High Resolution Cross Correlation Spectroscopy (HRCCS) has become a powerful tool to constrain both the physical characteristics and abundances of atomic/molecular constituents in exoplanetary atmospheres. Brogi & Line (2019) recently introduced a novel Bayesian atmospheric retrieval methodology that can combine observations from both longer wavelength (2-4 micron), ground-based, HRCCS and shorter wavelength (1-2 micron) space-based observatories such as the Hubble Space Telescope (HST). Here we present results from the application of this technique to both new and previously published observations of HD209458b and HD189733b from VLT/CRIRES, HST, and Spitzer. The more complete wavelength coverage provides a more comprehensive assessment of the atmosphere by way of stronger constraints on the thermal profiles, atmospheric metallicity, and carbon/oxygen inventory for these two benchmark planets. We also investigate the impact of possible model-induced biases including assumptions regarding molecular cross-sections, cloud model prescriptions, and thermal profile parameterizations. Finally, we present what constraints may be possible in the future by performing retrievals of synthetic observations from the next generation of high-resolution spectrographs like CRIRES+. This work has laid a foundational dataset that combines both space and ground-based observations to comprehensively characterize exoplanetary atmospheres and will be a useful benchmark in comparison to future efforts for both transiting and non-transiting atmospheric characterization.</p>

2020 ◽  
Vol 159 (3) ◽  
pp. 127
Author(s):  
Peter Zeidler ◽  
Antonella Nota ◽  
Eva K. Grebel ◽  
Elena Sabbi ◽  
Anna Pasquali ◽  
...  

2020 ◽  
Vol 495 (1) ◽  
pp. 224-237 ◽  
Author(s):  
Siddharth Gandhi ◽  
Matteo Brogi ◽  
Sergei N Yurchenko ◽  
Jonathan Tennyson ◽  
Phillip A Coles ◽  
...  

ABSTRACT High-resolution spectroscopy (HRS) has been used to detect a number of species in the atmospheres of hot Jupiters. Key to such detections is accurately and precisely modelled spectra for cross-correlation against the R ≳ 20 000 observations. There is a need for the latest generation of opacities which form the basis for high signal-to-noise detections using such spectra. In this study we present and make publicly available cross-sections for six molecular species, H2O, CO, HCN, CH4, NH3, and CO2 using the latest line lists most suitable for low- and high-resolution spectroscopy. We focus on the infrared (0.95–5 μm) and between 500 and 1500 K where these species have strong spectral signatures. We generate these cross-sections on a grid of pressures and temperatures typical for the photospheres of super-Earth, warm Neptunes, and hot Jupiters using the latest H2 and He pressure broadening. We highlight the most prominent infrared spectral features by modelling three representative exoplanets, GJ 1214 b, GJ 3470 b, and HD 189733 b, which encompass a wide range in temperature, mass, and radii. In addition, we verify the line lists for H2O, CO, and HCN with previous high-resolution observations of hot Jupiters. However, we are unable to detect CH4 with our new cross-sections from HRS observations of HD 102195 b. These high-accuracy opacities are critical for atmospheric detections with HRS and will be continually updated as new data become available.


2018 ◽  
Vol 619 ◽  
pp. A3 ◽  
Author(s):  
Lorenzo Pino ◽  
David Ehrenreich ◽  
Romain Allart ◽  
Christophe Lovis ◽  
Matteo Brogi ◽  
...  

Transmission spectroscopy with ground-based, high-resolution instruments provides key insight into the composition of exoplanetary atmospheres. Molecules such as water and carbon monoxide have been unambiguously identified in hot gas giants through cross-correlation techniques. A maximum in the cross-correlation function (CCF) is found when the molecular absorption lines in a binary mask or model template match those contained in the planet. Here, we demonstrate how the CCF method can be used to diagnose broadband spectroscopic features such as scattering by aerosols in high-resolution transit spectra. The idea consists in exploiting the presence of multiple water bands from the optical to the near-infrared. We have produced a set of models of a typical hot Jupiter spanning various conditions of temperature and aerosol coverage. We demonstrate that comparing the CCFs of individual water bands for the models constrains the presence and the properties of the aerosol layers. The contrast difference between the CCFs of two bands can reach ~100 ppm, which could be readily detectable with current or upcoming high-resolution stabilized spectrographs spanning a wide spectral range, such as ESPRESSO, CARMENES, HARPS-N+GIANO, HARPS+NIRPS, SPIRou, or CRIRES+.


2002 ◽  
Vol 207 ◽  
pp. 306-308
Author(s):  
R. Buta ◽  
M. L. McCall

The Hubble Space Telescope Wide Field and Planetary Camera 2 was used to image at high resolution the core region of the nearby, heavily obscured massive elliptical galaxy Maffei 1. We report on the discovery of 19 diffuse objects in the WFPC2 field that are likely to be globular clusters associated with Maffei 1. We present some preliminary data on the luminosities, colors, and sizes of these candidates.


Sign in / Sign up

Export Citation Format

Share Document