Will the PIC approach cure the heliosphere modeling?

2020 ◽  
Author(s):  
Romana Ratkiewicz

<p>To push the boundaries of space science, we first need to know more about the real boundary for Terrestrials in space that is heliopause. The heliopause separates solar wind from interstellar matter. This boundary surrounds and contains our heliosphere, the space ruled by the Sun. The state of our current knowledge of the heliosphere, despite a big step forward in the last half-century, requires further work to answer extremely important and at the same time basic science questions. One of the still unsolved and most fundamental question is the structure and shape of the heliosphere. In this paper we shortly discuss selected heliosphere  created so far models and we initite consideration of hybrid-kinetic model using a PIC approach for modeling the heliosphere.</p> <p> </p>

This lecture is an attempt to review current knowledge about certain terrestrial phenomena with the twofold purpose: ( a ) to discover the extent to which the behaviour of the Earth may be influenced by fluctuations in its astronomical environment, ( b ) to see if new knowledge of that environment may be gained from its influence on the Earth. Fluctuations in geomagnetism, climate, glaciation, biological extinctions, etc., are surveyed with special regard to datings and characteristic time-intervals; correlations between such fluctuations are discussed. Astronomical phenomena, within the Solar System and elsewhere in the Galaxy, that might cause terrestrial effects are reviewed. As regards astronomical effects on Earth: (i) There is a good case - not yet overwhelming - for the currently widely accepted view that fluctuations of glaciation within an ice-epoch result from changes of insolation accompanying fluctuations of the Earth’s motion relative to the Sun. Some evidence suggests that an ice-epoch may be triggered by variations of the astronomical environment encountered in the Sun’s motion relative to the Galaxy; but tectonic changes on Earth may be the main trigger. (ii) Impacts of planetesimals may be more important than hitherto recognized. Among astronomical results regarding the Sun, while the intensity of solar ‘activity’ is variable, terrestrial effects provide no confirmation that the Sun is a ‘variable star’. Regarding the Galaxy, impacting planetesimals may originate in interstellar clouds, and so provide on Earth samples of interstellar matter. Some unsolved problems emphasized by the review are listed; certain concepts that would call for consideration in any extended review are mentioned.


2005 ◽  
Vol 20 (29) ◽  
pp. 6621-6632 ◽  
Author(s):  
BERND HEBER

The heliosphere is the region around the Sun that is filled by the solar wind and its embedded magnetic field. The interaction of the supersonic solar wind with the local interstellar medium leads to a transition from supersonic to subsonic speeds at the heliospheric termination shock. The latter is regarded to be the source of the anomalous component of cosmic rays. Within the heliosphere "local" energetic particle sources, like the Sun and interplanetary shock waves contribute to the cosmic ray flux, too. At energies below a few GeV the observed galactic and anomalous cosmic ray intensities are modulated by the heliospheric magnetic field. In my contribution, both the current knowledge and hypotheses about modulation and the transport of cosmic rays in the heliosphere are reviewed.


2020 ◽  
Vol 18 (45) ◽  
pp. 21-31
Author(s):  
Salman Zaidan Khalaf ◽  
Khaleel Abrahim ◽  
Imad Kassar Akeab

    X-ray emission contains some of the gaseous properties is produced when the particles of the solar wind strike the atmosphere of comet ISON and PanSTARRS Comets. The data collected with NASA Chandra X-ray Observatory of the two comets, C/2012 S1 (also known as Comet ISON) and C/2011 S4 (Comet PanSTARRS) are used in this study.    The real abundance of the observed X-ray spectrum elements has been extracted by a new simple mathematic model. The study found some physical properties of these elements in the comet’s gas such as a relationship between the abundance with emitted energy. The elements that have emission energy (2500-6800) eV, have abundance (0.1-0.15) %, while the elements that have emission energy (850-2500) eV and (6800-9250) eV have abundance (0.2-0.3) %.    The relation between interacted energy and atomic number is form two sets.  The interacted energy of each element is increased as the atomic number increased. This case has been seen in both comets


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2017 ◽  
Vol 35 (6) ◽  
pp. 1275-1291 ◽  
Author(s):  
Allan R. Macneil ◽  
Christopher J. Owen ◽  
Robert T. Wicks

Abstract. The development of knowledge of how the coronal origin of the solar wind affects its in situ properties is one of the keys to understanding the relationship between the Sun and the heliosphere. In this paper, we analyse ACE/SWICS and WIND/3DP data spanning  > 12 years, and test properties of solar wind suprathermal electron distributions for the presence of signatures of the coronal temperature at their origin which may remain at 1 AU. In particular we re-examine a previous suggestion that these properties correlate with the oxygen charge state ratio O7+ ∕ O6+, an established proxy for coronal electron temperature. We find only a very weak but variable correlation between measures of suprathermal electron energy content and O7+ ∕ O6+. The weak nature of the correlation leads us to conclude, in contrast to earlier results, that an initial relationship with core electron temperature has the possibility to exist in the corona, but that in most cases no strong signatures remain in the suprathermal electron distributions at 1 AU. It cannot yet be confirmed whether this is due to the effects of coronal conditions on the establishment of this relationship or due to the altering of the electron distributions by processing during transport in the solar wind en route to 1 AU. Contrasting results for the halo and strahl population favours the latter interpretation. Confirmation of this will be possible using Solar Orbiter data (cruise and nominal mission phase) to test whether the weakness of the relationship persists over a range of heliocentric distances. If the correlation is found to strengthen when closer to the Sun, then this would indicate an initial relationship which is being degraded, perhaps by wave–particle interactions, en route to the observer.


2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


1765 ◽  
Vol 55 ◽  
pp. 326-344 ◽  

The observations of the late transit of Venus, though made with all possible care and accuracy, have not enabled us to determine with certainty the real quantity of the sun's parallax; since, by a comparison of the observations made in several parts of the globe, the sun's parallax is not less than 8" 1/2, nor does it seem to exceed 10". From the labours of those gentlemen, who have attempted to deduce this quantity from the theory of gravity, it should seem that the earth performs its annual revolution round the sun at a greater distance than is generally imagined: since Mr. Professor Stewart has determined the sun's parallax to be only 6', 9, and Mr. Mayer, the late celebrated Professor at Gottingen, who hath brought the lunar tables to a degree of perfection almost unexpected, is of opinion that it cannot exceed 8".


Sign in / Sign up

Export Citation Format

Share Document