scholarly journals Reduced-complexity model for the impact of anthropogenic CO<sub>2</sub> emissions on future glacial cycles

2021 ◽  
Vol 12 (4) ◽  
pp. 1275-1293
Author(s):  
Stefanie Talento ◽  
Andrey Ganopolski

Abstract. We propose a reduced-complexity process-based model for the long-term evolution of the global ice volume, atmospheric CO2 concentration, and global mean temperature. The model's only external forcings are the orbital forcing and anthropogenic CO2 cumulative emissions. The model consists of a system of three coupled non-linear differential equations representing physical mechanisms relevant for the evolution of the climate–ice sheet–carbon cycle system on timescales longer than thousands of years. Model parameters are calibrated using paleoclimate reconstructions and the results of two Earth system models of intermediate complexity. For a range of parameters values, the model is successful in reproducing the glacial–interglacial cycles of the last 800 kyr, with the best correlation between modelled and global paleo-ice volume of 0.86. Using different model realisations, we produce an assessment of possible trajectories for the next 1 million years under natural and several fossil-fuel CO2 release scenarios. In the natural scenario, the model assigns high probability of occurrence of long interglacials in the periods between the present and 120 kyr after present and between 400 and 500 kyr after present. The next glacial inception is most likely to occur ∼50 kyr after present with full glacial conditions developing ∼90 kyr after present. The model shows that even already achieved cumulative CO2 anthropogenic emissions (500 Pg C) are capable of affecting the climate evolution for up to half a million years, indicating that the beginning of the next glaciation is highly unlikely in the next 120 kyr. High cumulative anthropogenic CO2 emissions (3000 Pg C or higher), which could potentially be achieved in the next 2 to 3 centuries if humanity does not curb the usage of fossil fuels, will most likely provoke Northern Hemisphere landmass ice-free conditions throughout the next half a million years, postponing the natural occurrence of the next glacial inception to 600 kyr after present or later.

2021 ◽  
Author(s):  
Stefanie Talento ◽  
Andrey Ganopolski

Abstract. We propose a reduced-complexity process-based model for the long-term evolution of the global ice volume, atmospheric CO2 concentration and global mean temperature. The model only external forcings are the orbital forcing and anthropogenic CO2 cumulative emissions. The model consists of a system of three coupled non-linear differential equations, representing physical mechanisms relevant for the evolution of the Climate – Ice Sheets – Carbon cycle System in timescales longer than thousands of years. The model is successful in reproducing the glacial-interglacial cycles of the last 800 kyr, in good agreement with the timing and amplitude of paleorecord fluctuations, with the best correlation between modelled and paleo global ice volume of 0.86. Using different model realisations, we produce a probabilistic forecast of the evolution of the Earth system over the next 1 million years under natural and several fossil-fuel CO2 release scenarios. In the natural scenario, the model assigns high probability of occurrence of long interglacials in the periods between present and 120 kyr after present, and between 400 kyr and 500 kyr after present. The next glacial inception is most likely to occur ~ 50 kyr after present with full glacial conditions developing ~ 90 kyr after present. The model shows that even already achieved cumulative CO2 anthropogenic emissions (500 PgC) are capable of affecting climate evolution for up to half million years, indicating that the beginning of the next glaciation is highly unlikely in the next 120 kyr. High cumulative anthropogenic CO2 emissions (3000 PgC or higher), which could potentially be achieved in the next two to three centuries if humanity does not curb the usage of fossil-fuels, will most likely provoke Northern Hemisphere landmass ice-free conditions throughout the next half million years, postponing the natural occurrence of the next glacial inception to 600 kyr after present or later.


2021 ◽  
Author(s):  
Stefanie Talento ◽  
Andrey Ganopolski

&lt;p&gt;We propose a reduced-complexity process-based model for the long-term evolution of the global ice volume, atmospheric CO&lt;sub&gt;2&lt;/sub&gt; concentration and global mean temperature. The model only external forcings are the orbital forcing and anthropogenic CO&lt;sub&gt;2&lt;/sub&gt; cumulative emissions. The model consists of a system of three coupled non-linear differential equations, representing physical mechanisms relevant for the evolution of the climate &amp;#8211; ice sheets &amp;#8211; Carbon cycle system in timescales longer than thousands of years. The model is successful in reproducing the glacial-interglacial fluctuations of the last 800 kyr, in good agreement with paleorecords both in terms of timing and amplitude, with a correlation between modelled and paleo global ice volume of up to 0.86.&lt;/p&gt;&lt;p&gt;Using different model realisations, we generate a probabilistic forecast of the evolution of the Earth system over the next 1 million years under natural and several fossil-fuel CO&lt;sub&gt;2&lt;/sub&gt; release scenarios. In the natural scenario, the model assigns high probability of occurrence of long interglacials in the periods between present and 50 kyr after present, and between 400 kyr and 500 kyr after present. The next full glacial conditions are most likely to occur 90 kyr after present. The model shows that even already achieved cumulative CO&lt;sub&gt;2&lt;/sub&gt; anthropogenic emissions (500 PgC) are capable of affecting the climate evolution for up to half million years, indicating that the beginning of the next glaciation is highly unlikely in the next 150 kyr. If cumulative fossil-fuel CO&lt;sub&gt;2&lt;/sub&gt; emissions reach 3000 PgC, or higher, the model predicts with high probability ice-free Northern Hemisphere landmass conditions will prevail in the next half million years, postponing the natural occurrence of the next glacial inception to 600 kyr after present.&lt;/p&gt;


2019 ◽  
Vol 2019 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jérémie Gerhardt ◽  
Michael E. Miller ◽  
Hyunjin Yoo ◽  
Tara Akhavan

In this paper we discuss a model to estimate the power consumption and lifetime (LT) of an OLED display based on its pixel value and the brightness setting of the screen (scbr). This model is used to illustrate the effect of OLED aging on display color characteristics. Model parameters are based on power consumption measurement of a given display for a number of pixel and scbr combinations. OLED LT is often given for the most stressful display operating situation, i.e. white image at maximum scbr, but having the ability to predict the LT for other configurations can be meaningful to estimate the impact and quality of new image processing algorithms. After explaining our model we present a use case to illustrate how we use it to evaluate the impact of an image processing algorithm for brightness adaptation.


Author(s):  
David L. Kirchman

Geomicrobiology, the marriage of geology and microbiology, is about the impact of microbes on Earth materials in terrestrial systems and sediments. Many geomicrobiological processes occur over long timescales. Even the slow growth and low activity of microbes, however, have big effects when added up over millennia. After reviewing the basics of bacteria–surface interactions, the chapter moves on to discussing biomineralization, which is the microbially mediated formation of solid minerals from soluble ions. The role of microbes can vary from merely providing passive surfaces for mineral formation, to active control of the entire precipitation process. The formation of carbonate-containing minerals by coccolithophorids and other marine organisms is especially important because of the role of these minerals in the carbon cycle. Iron minerals can be formed by chemolithoautotrophic bacteria, which gain a small amount of energy from iron oxidation. Similarly, manganese-rich minerals are formed during manganese oxidation, although how this reaction benefits microbes is unclear. These minerals and others give geologists and geomicrobiologists clues about early life on Earth. In addition to forming minerals, microbes help to dissolve them, a process called weathering. Microbes contribute to weathering and mineral dissolution through several mechanisms: production of protons (acidity) or hydroxides that dissolve minerals; production of ligands that chelate metals in minerals thereby breaking up the solid phase; and direct reduction of mineral-bound metals to more soluble forms. The chapter ends with some comments about the role of microbes in degrading oil and other fossil fuels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 387
Author(s):  
Yiting Liang ◽  
Yuanhua Zhang ◽  
Yonggang Li

A mechanistic kinetic model of cobalt–hydrogen electrochemical competition for the cobalt removal process in zinc hydrometallurgical was proposed. In addition, to overcome the parameter estimation difficulties arising from the model nonlinearities and the lack of information on the possible value ranges of parameters to be estimated, a constrained guided parameter estimation scheme was derived based on model equations and experimental data. The proposed model and the parameter estimation scheme have two advantages: (i) The model reflected for the first time the mechanism of the electrochemical competition between cobalt and hydrogen ions in the process of cobalt removal in zinc hydrometallurgy; (ii) The proposed constrained parameter estimation scheme did not depend on the information of the possible value ranges of parameters to be estimated; (iii) the constraint conditions provided in that scheme directly linked the experimental phenomenon metrics to the model parameters thereby providing deeper insights into the model parameters for model users. Numerical experiments showed that the proposed constrained parameter estimation algorithm significantly improved the estimation efficiency. Meanwhile, the proposed cobalt–hydrogen electrochemical competition model allowed for accurate simulation of the impact of hydrogen ions on cobalt removal rate as well as simulation of the trend of hydrogen ion concentration, which would be helpful for the actual cobalt removal process in zinc hydrometallurgy.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuai Yang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Juan Yu ◽  
Jiarong Li

Abstract In this paper, a novel rumor-spreading model is proposed under bilingual environment and heterogenous networks, which considers that exposures may be converted to spreaders or stiflers at a set rate. Firstly, the nonnegativity and boundedness of the solution for rumor-spreading model are proved by reductio ad absurdum. Secondly, both the basic reproduction number and the stability of the rumor-free equilibrium are systematically discussed. Whereafter, the global stability of rumor-prevailing equilibrium is explored by utilizing Lyapunov method and LaSalle’s invariance principle. Finally, the sensitivity analysis and the numerical simulation are respectively presented to analyze the impact of model parameters and illustrate the validity of theoretical results.


Sign in / Sign up

Export Citation Format

Share Document