scholarly journals Global whole-rock geochemical database compilation

2019 ◽  
Vol 11 (4) ◽  
pp. 1553-1566 ◽  
Author(s):  
Matthew Gard ◽  
Derrick Hasterok ◽  
Jacqueline A. Halpin

Abstract. Collation and dissemination of geochemical data are critical to promote rapid, creative, and accurate research and place new results in an appropriate global context. To this end, we have compiled a global whole-rock geochemical database, sourced from various existing databases and supplemented with an extensive list of individual publications. Currently the database stands at 1 022 092 samples with varying amounts of associated sample data, including major and trace element concentrations, isotopic ratios, and location information. Spatial and temporal distribution is heterogeneous; however, temporal distributions are enhanced over some previous database compilations, particularly in ages older than ∼ 1000 Ma. Also included are a range of geochemical indices, various naming schema, and physical property estimates computed on a major element normalized version of the geochemical data for quick reference. This compilation will be useful for geochemical studies requiring extensive data sets, in particular those wishing to investigate secular temporal trends. The addition of physical properties, estimated from sample chemistry, represents a unique contribution to otherwise similar geochemical databases. The data are published in .csv format for the purposes of simple distribution, but exist in a structure format acceptable for database management systems (e.g. SQL). One can either manipulate these data using conventional analysis tools such as MATLAB®, Microsoft® Excel, or R, or upload them to a relational database management system for easy querying and management of the data as unique keys already exist. The data set will continue to grow and be improved, and we encourage readers to contact us or other database compilations within about any data that are yet to be included. The data files described in this paper are available at https://doi.org/10.5281/zenodo.2592822 (Gard et al., 2019a).

2019 ◽  
Author(s):  
Matthew Gard ◽  
Derrick Hasterok ◽  
Jacqueline Halpin

Abstract. Dissemination and collation of geochemical data are critical to promote rapid, creative and accurate research and place new results in an appropriate global context. To this end, we have assembled a global whole-rock geochemical database, with other associated sample information and properties, sourced from various existing databases and supplemented with numerous individual publications and corrections. Currently the database stands at 1,023,490 samples with varying amounts of associated information including major and trace element concentrations, isotopic ratios, and location data. The distribution both spatially and temporally is quite heterogeneous, however temporal distributions are enhanced over some previous database compilations, particularly in terms of ages older than ~ 1000 Ma. Also included are a wide range of computed geochemical indices, physical property estimates and naming schema on a major element normalized version of the geochemical data for quick reference. This compilation will be useful for geochemical studies requiring extensive data sets, in particular those wishing to investigate secular temporal trends. The addition of physical properties, estimated by sample chemistry, represents a unique contribution to otherwise similar geochemical databases. The data is published in .csv format for the purposes of simple distribution but exists in a format acceptable for database management systems (e.g. SQL). One can either manipulate this data using conventional analysis tools such as MATLAB®, Microsoft® Excel, or R, or upload to a relational database management system for easy querying and management of the data as unique keys already exist. This data set will continue to grow, and we encourage readers to contact us or other database compilations contained within about any data that is yet to be included. The data files described in this paper are available at https://doi.org/10.5281/zenodo.2592823 (Gard et al., 2019).


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. H33-H44 ◽  
Author(s):  
Hendrik Paasche ◽  
Jens Tronicke ◽  
Klaus Holliger ◽  
Alan G. Green ◽  
Hansruedi Maurer

Inversions of an individual geophysical data set can be highly nonunique, and it is generally difficult to determine petrophysical parameters from geophysical data. We show that both issues can be addressed by adopting a statistical multiparameter approach that requires the acquisition, processing, and separate inversion of two or more types of geophysical data. To combine information contained in the physical-property models that result from inverting the individual data sets and to estimate the spatial distribution of petrophysical parameters in regions where they are known at only a few locations, we demonstrate the potential of the fuzzy [Formula: see text]-means (FCM) clustering technique. After testing this new approach on synthetic data, we apply it to limited crosshole georadar, crosshole seismic, gamma-log, and slug-test data acquired within a shallow alluvial aquifer. The derived multiparameter model effectively outlines the major sedimentary units observed in numerous boreholes and provides plausible estimates for the spatial distributions of gamma-ray emitters and hydraulic conductivity.


2014 ◽  
Vol 7 (12) ◽  
pp. 4353-4365 ◽  
Author(s):  
A. Lyapustin ◽  
Y. Wang ◽  
X. Xiong ◽  
G. Meister ◽  
S. Platnick ◽  
...  

Abstract. The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra–Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1–B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ΔNDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.


1996 ◽  
Vol 74 (9) ◽  
pp. 1622-1631 ◽  
Author(s):  
Bradley J. Swanson ◽  
Donald R. Johnson

We analyzed the hypothesized relationships of temporal, spatial, and harvest trends with frequency of red fox (Vulpes vulpes) color morphs in 57 Hudson's Bay Company posts over a 20- to 26-year period, but found none of the strong relationships postulated to exist. A meta-analysis of each data set suggested a weak inverse relationship between latitude and frequency of the red morph. Meta-analysis further indicated a weak positive relationship with time and the frequency of the red phase, although this trend was not due to climate change. No relationship was found between harvest size and color phase, or between a 1-year lagged harvest size and color phase, which evaluated the effects of dispersal. The data sets did not allow conclusive determination of the mechanisms behind the trends, but it is postulated that a slight selective advantage is found for the dark morphs at high latitudes, while the temporal increase in frequency of the red phenotype is probably the result of northward dispersal from southern populations.


2021 ◽  
Author(s):  
Or Mordechay Bialik ◽  
Emilia Jarochowska ◽  
Michal Grossowicz

<p>Ordination is a family of multivariate exploratory data analysis methods. With the advent of high-throughput data acquisition protocols, community databases, and multiproxy studies, the use of ordination in Earth sciences has snowballed. As data management and analytical tools expand, this growing body of knowledge opens new possibilities of meta-analyses and data-mining across studies. This requires the analyses to be chosen adequately to the character of Earth science data, including pre-treatment consistent with the precision and accuracy of the variables, as well as appropriate documentation. To investigate the current situation in Earth sciences, we surveyed 174 ordination analyses in 163 publications in the fields of geochemistry, sedimentology and palaeoenvironmental reconstruction and monitoring. We focussed on studies using Principal Component Analysis (PCA), Non-Metric Multidimensional Scaling (NMDS) and Detrended Correspondence Analysis (DCA).</p><p>PCA was the most ubiquitous type of analysis (84%), with the other two accounting for ca. 12% each. Of 128 uses of PCA, only 5 included a test for normality, and most of these cases were not applied or documented correctly. Common problems include: (1) not providing information on the dimensions of the analysed matrix (16% cases); (2) using a larger number of variables than observations (24 cases); (3) not documenting the distance metric used in NMDS (55% cases); and (4) lack of information on the software used (38% cases). The majority (53%) of surveyed studies did not provide the data used for analysis at all and a further 35% provided data sets in a format that does not allow immediate, error-free reuse, e.g. as data table directly in the article text or in PDF appendix. The “golden standard” of placing a curated data set in an open access repository was followed only by 6 (3%) of the analyses. Among analyses which reported using code-based statistical environments such as R Software, SAS or SPSS, none provided the code that would allow reproducing the analyses.</p><p>Geochemical and Earth science data sets require expert knowledge which should support analytical decisions and interpretations. Data analysis skills attract students to Earth sciences study programmes and offer a viable research alternative when field- or lab-based work is limited. However, many study curricula and publishing process have not yet endorsed this methodological progress, leading to situations where mentors, reviewers and editors cannot offer quality assurance for the use of ordination methods. We provide a review of solutions and annotated R Software code for PCA, NMDA and DCA of geochemical data sets in the freeware R Software environment, encouraging the community to reuse and further develop a reproducible ordination workflow.</p>


Author(s):  
Jothiraj S ◽  
◽  
Dr.Jobin Christ M C ◽  
Dr. Yuvraj Gupta ◽  
◽  
...  

A database is the data collection in a well-organized manner from which its content can easily be accessed, retrieved, managed and updated as per the requirements. A web module based biomedical database management system (BM-DBMS) is developed for Voluntary Health Service (VHS) Multispecialty hospital to assist them to manage the database on their own in real-time. The developed program is based on a data set of 348 medical equipment belonging to 15 departments in the hospital. The database of each medical device having a unique assigned asset number is included in the developed database management system. The web module is built on java platform. The user information runs on My structured query language (My SQL). The facility for the management of medical devices activities from initial log-in to maintenance services is provided. In this project, 3 login credentials namely admin, biomedical and nursing has been developed. The admin can add the asset names, equipment details, medical department, equipment serial number, warranty expiring date. Also, a dashboard to view the total asset, complaints raised, planned preventive maintenance (PPM) details are provided. The nursing staff can raise complaints and the biomedical engineer can view the complaint raised through their respective login.


2021 ◽  
pp. 1-50
Author(s):  
Adewale Amosu ◽  
Yuefeng Sun

We develop a support vector machine (SVM) method that relies on core-measured data as well as gamma ray, deep resistivity, sonic and density wireline well log data in identifying thermally mature TOC-rich layers at depth intervals with missing geochemical data in unconventional resource plays. We first test the SVM method using the Duvernay shale formation data. The SVM method successfully classifies the TOC data set into TOC-rich, TOC-poor classes and the Tmax data set into thermally mature and thermally immature classes, when optimal features are selected. To further test the SVM approach, we generate depth-separated training and test data sets from a well in the Duvernay shale formation and successfully use the approach to identify thermally mature TOC-rich intervals. We also demonstrate the successful cross-basin application of the SVM approach in predicting TOC using data from the Barnett and Duvernay shale formations as the training and test data sets respectively.


1992 ◽  
Vol 6 ◽  
pp. 101-101
Author(s):  
Lawrence J. Flynn ◽  
John C. Barry ◽  
Michele E. Morgan ◽  
David Pilbeam ◽  
Louis L. Jacobs ◽  
...  

The Siwalik sequence, particularly the interval from 18 to 7 Ma, provides one of the few terrestrial data sets that allows direct measurement of temporal durations of mammalian species. Its data are drawn from a single biogeographic subprovince and superposed collections likely represent successive samples of single lineages. Observed temporal ranges underestimate total species longevities if (1) species existed in other biogeographic provinces before or after the temporal ranges recorded in the Siwaliks, or (2) the fossil record inadequately samples species durations in the Siwalik subprovince. Some data, notably from Afghanistan, China, and Thailand, bear on the first variable. The second can be controlled by considering data quality, in this case the temporal distribution of good data sets, to assess the scale of accuracy available for defining range endpoints. In general, range endpoints can be estimated to the nearest 0.1 million years.The diverse Rodentia give a mean species longevity of 2.2 million years for the Miocene Siwaliks. This includes single records, but of course ignores unretrieved rare or short-lived taxa. The diverse Artiodactyla yield 3.1 million years. The difference may reflect greater body size and longer generation time; large Perissodactyla and Proboscidea have longer temporal ranges. Carnivorous mammals also show about 3 million year durations. Given these data, the average longevity for Sivapithecus species (1.6 million years) is modest. The deposits of the Clarks Fork Basin, Wyoming, offer a Paleogene data set comparable to that of the Neogene Siwaliks. Paleocene-Eocene mammals of North America yield shorter longevities (most less than one million years).Extinction is the dominant mode of species termination for Siwalik mammals. Most taxa originated by immigration (as at about 13.5 Ma) or abrupt speciation. There are some cases for insitu transformation of lineages, for example in the genera Punjabemys, Antemus, Percrocuta, Dorcatherium, Giraffokeryx, and Selenoportax. The rodent Kanisamys shows a rate of increase in tooth size of 0.5 darwins. This overall rate is moderate by Paleogene standards, but includes an interval of more rapid change between 9.0 and 8.5 Ma.


2021 ◽  
Author(s):  
Jarno Huygh ◽  
Johan Vellekoop ◽  
Matthias Sinnesael ◽  
Pim Kaskes ◽  
John Jagt ◽  
...  

<p>Cyclostratigraphic studies on carbonate successions have proved invaluable for understanding palaeoclimate and for constructing improved, high-resolution age models of the Late Cretaceous. Whereas carbonate strata from the type-Maastrichtian from the Netherlands and Belgium have provided a wealth of palaeontological data, so far, dating of these deposits has relied mainly on biostratigraphy and preliminary attempts at cyclostratigraphy. The existing basic cyclostratigraphic framework is based principally on apparent cyclic variations in bioclast composition and suggested Milankovitch-paced flint cycles. Until now, these strata have not yet been examined using a cyclostratigraphic approach based on high-resolution multi-proxy geochemical data sets. Within the scope of the Maastrichtian Geoheritage Project, we attempt to construct an improved astrochronological age model for Maastrichtian chalk deposits of the Gulpen Formation.</p><p>We have carried out a high-resolution elemental composition analysis of the Lower to Middle Maastrichtian chalk succession exposed at the Hallembaye (Kreco) quarry, NE Belgium. Approximately 460 chalk samples were collected every 5 cm over a 23-metre-thick stratigraphic interval and analysed as homogenised powders using micro X-ray fluorescence. This extensive elemental data set is used to evaluate (regular) changes in palaeoenvironmental conditions over time. Additionally, stratigraphic comparison of variations in elemental concentrations in the chalk with the occurrence of flint layers provides insights into potential diagenetic alterations. </p><p>Preliminary results display promising trends with potential for the development of a cyclostratigraphic age model for the Gulpen Formation. Significant correlation between the main matrix elements calcium and silica might suggest a relationship between silica-depleted chalk and occurring flint layers throughout the chalk succession. Additionally, observed rhythmic variations in elements including - but not limited to - titanium, aluminium and potassium might exemplify changing palaeoenvironmental conditions. This improved astrochronological age model can be compared with age-equivalent astrochronologies and will, in combination with ongoing carbon isotope stratigraphy work, enable a better dating of the geological and biological records from the type-Maastrichtian. </p>


1996 ◽  
Vol 35 (01) ◽  
pp. 52-58 ◽  
Author(s):  
A. Mavromatis ◽  
N. Maglaveras ◽  
A. Tsikotis ◽  
G. Pangalos ◽  
V. Ambrosiadou ◽  
...  

AbstractAn object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.


Sign in / Sign up

Export Citation Format

Share Document