scholarly journals CASCADE – The Circum-Arctic Sediment CArbon DatabasE

2021 ◽  
Vol 13 (6) ◽  
pp. 2561-2572
Author(s):  
Jannik Martens ◽  
Evgeny Romankevich ◽  
Igor Semiletov ◽  
Birgit Wild ◽  
Bart van Dongen ◽  
...  

Abstract. Biogeochemical cycling in the semi-enclosed Arctic Ocean is strongly influenced by land–ocean transport of carbon and other elements and is vulnerable to environmental and climate changes. Sediments of the Arctic Ocean are an important part of biogeochemical cycling in the Arctic and provide the opportunity to study present and historical input and the fate of organic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differences between the Arctic regions and to study Arctic biogeochemical budgets. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) was established to curate data primarily on concentrations of organic carbon (OC) and OC isotopes (δ13C, Δ14C) yet also on total N (TN) as well as terrigenous biomarkers and other sediment geochemical and physical properties. This new database builds on the published literature and earlier unpublished records through an extensive international community collaboration. This paper describes the establishment, structure and current status of CASCADE. The first public version includes OC concentrations in surface sediments at 4244 oceanographic stations including 2317 with TN concentrations, 1555 with δ13C-OC values and 268 with Δ14C-OC values and 653 records with quantified terrigenous biomarkers (high-molecular-weight n-alkanes, n-alkanoic acids and lignin phenols). CASCADE also includes data from 326 sediment cores, retrieved by shallow box or multi-coring, deep gravity/piston coring, or sea-bottom drilling. The comprehensive dataset reveals large-scale features of both OC content and OC sources between the shelf sea recipients. This offers insight into release of pre-aged terrigenous OC to the East Siberian Arctic shelf and younger terrigenous OC to the Kara Sea. Circum-Arctic sediments thereby reveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments and facilitates a wide array of future empirical and modeling studies of the Arctic carbon cycle. The database is openly and freely available online (https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in various machine-readable data formats (data tables, GIS shapefile, GIS raster), and also provides ways for contributing data for future CASCADE versions. We will continuously update CASCADE with newly published and contributed data over the foreseeable future as part of the database management of the Bolin Centre for Climate Research at Stockholm University.

2020 ◽  
Author(s):  
Jannik Martens ◽  
Evgeny Romankevich ◽  
Igor Semiletov ◽  
Birgit Wild ◽  
Bart van Dongen ◽  
...  

Abstract. Biogeochemical cycling in the extensive shelf seas and in the interior basins of the semi-enclosed Arctic Ocean are strongly influenced by land-ocean transport of carbon and other elements. The Arctic carbon cycle system is also inherently connected with the climate, and thus vulnerable to environmental and climate changes. Sediments of the Arctic Ocean are an active and integral part in Arctic biogeochemical cycling, and provide the opportunity to study present and historical input and fate of organic matter (e.g., through permafrost thawing). To compare differences between the Arctic regions and to study Arctic biogeochemical budgets, comprehensive sedimentary records are required. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) was established to curate data primarily on concentrations of organic carbon (OC) and OC isotopes (δ13C, Δ14C), yet also on total N (TN) as well as of terrigenous biomarkers and other sediment geochemical and physical properties drawn both from the published literature and from earlier unpublished records through an extensive international community collaboration. This paper describes the establishment, structure and current status of CASCADE. This first public version includes OC concentrations in surface sediments at 4244 oceanographic stations including 2317 with TN concentrations, 1555 with δ13C-OC values, 268 with Δ14C-OC values and 653 records with quantified terrigenous biomarkers (high molecular weight n-alkanes, n-alkanoic acids and lignin phenols) distributed over the shelves and the central basins of the Arctic Ocean. CASCADE also includes data from 326 sediment cores, retrieved by shallow box- or multi-coring and deep gravity/piston coring, as well as sea-bottom drilling. The comprehensive dataset reveals several large-scale features, including clear differences in both OC content and isotope-based diagnostics of OC sources between the shelf sea recipients. This indicates, for instance, the release of strongly pre-aged terrigenous OC to the East Siberian Arctic shelf and younger terrigenous OC to the Kara Sea and thus provides clues about land-ocean transport of material released by thawing permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments and facilitates a wide array of future empirical and modelling studies of the Arctic carbon cycle. CASCADE is openly and freely available online (https://doi.org/10.17043/cascade; Martens et al., 2020b), is provided in various machine-readable data formats (data tables, GIS shapefile, GIS raster), and also provides ways for contributing data for future CASCADE versions. CASCADE will be continuously updated with newly published and contributed data over the foreseeable future as part of the database management of the Bolin Centre for Climate Research at Stockholm University.


2021 ◽  
Author(s):  
Jannik Martens ◽  
Birgit Wild ◽  
Igor Semiletov ◽  
Oleg V. Dudarev ◽  
Örjan Gustafsson

<p>Climate change is expected to affect the release of organic carbon (OC) from Arctic permafrost systems and other terrestrial deposits. In addition to greenhouse gas emissions on land, a fraction of the organic matter is liberated to the aquatic cycle and migrates to the Arctic Ocean where it is either degraded or buried in sediments, foremost on the vast continental shelves.</p><p>The Arctic Ocean basin represents a large footprint for contemporary and past land-ocean transport of terrestrial OC. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE; https://doi.org/10.5194/essd-2020-401) was established to curate and harmonize data on OC and total nitrogen concentrations, carbon isotopes (δ<sup>13</sup>C, Δ<sup>14</sup>C) and terrestrial biomarkers (long-chain n-alkanes, n-alkanoic acids and lignin phenols) in an openly accessible data collection. CASCADE was populated using carbon data from both published records and unpublished data from a large community collaboration. The first release of CASCADE includes observations at thousands of oceanographic stations distributed over the shelves and the central basins of the Arctic Ocean, and also includes hundreds of sediment cores, representing a range of time scales (decadal to orbital).</p><p>Mapping CASCADE data provides an overview to start deducing sources, pathways and deposition of carbon in different regions of the Arctic Ocean. Dual-isotope (δ<sup>13</sup>C, Δ<sup>14</sup>C) source apportionment of OC and <sup>210</sup>Pb dating of centennial-scale sediment cores permit quantitative analysis of sequestration of carbon transported from permafrost systems and other deposits to the Arctic Ocean. Preliminary results suggest that surface soils (incl. permafrost active layer) are the dominating terrestrial carbon source to Circum-Arctic shelf sediments. The second largest terrestrial source are Pleistocene ice-rich permafrost compartments (Ice Complex Deposits), which stretch along coastlines of the Laptev, East Siberian, Chukchi and Beaufort Seas and are highly vulnerable to coastal erosion and thermal collapse in a warming climate.</p><p>Climate change is likely to cause permafrost thawing by further deepening of the seasonal active layer and accelerated coastal erosion of permafrost, as well as disturbance of the vast boreal peatlands. CASCADE provides an integrated perspective and benchmark for lateral carbon remobilization and will fuel further empirical and modelling studies of Arctic biogeochemical cycles.</p>


2020 ◽  
Author(s):  
Jannik Martens ◽  
Birgit Wild ◽  
Tommaso Tesi ◽  
Francesco Muschitiello ◽  
Matt O’Regan ◽  
...  

<p>Environmental archives and carbon cycle models suggest that climate warming during the last deglaciation (the transition from the last glacial to the Holocene) caused large-scale thaw of Arctic permafrost, followed by the release of previously freeze-locked carbon. In addition to changing oceanic circulation and outgassing of CO<sub>2 </sub>trapped in the deep glacial ocean, organic carbon (OC) release from thawing permafrost might have contributed to the rise in atmospheric CO<sub>2</sub> by 80 ppmv or ~200 Pg C between 17.5 and 11.7 kyr before present (BP). The few Arctic sediment cores to date, however, lack either temporal resolution or reflect only regional catchments, leaving most of the permafrost OC remobilization of the deglaciation unconstrained.</p><p>Our study explores the flux and fate of OC released from permafrost to the Siberian Arctic Seas during the last deglaciation. The Arctic Ocean is the main recipient of permafrost material delivered by river transport or collapse of coastal permafrost, providing an archive for current and past release of OC from thawing permafrost. We studied isotopes (Δ<sup>14</sup>C-OC, δ<sup>13</sup>C-OC) and terrestrial biomarkers (CuO-derived lignin phenols, <em>n</em>-alkanes, <em>n</em>-alkanoic acids) in a number of sediment cores from the Siberian Shelf and Central Arctic Ocean to reconstruct source and fate of OC previously locked in permafrost.</p><p>The composite record of three cores from the Laptev, East Siberian and Chukchi Seas suggest a combination of OC released by deepening of permafrost active layer in inland Siberia and by thermal collapse of coastal permafrost during the deglaciation. Coastal erosion of permafrost during the deglaciation suggests that sea-level rise and flooding of the Siberian shelf remobilized OC from permafrost deposits that covered the dry shelf areas during the last glacial. A sediment core from the Central Arctic Ocean demonstrates that this occurred in two major pulses; i) during the Bølling-Allerød (14.7-12.9 kyr BP), but most strongly ii) during the early Holocene (11-7.6 kyr BP). In the early Holocene, flooding of 80% of the Siberian shelf amplified permafrost OC release to the Arctic Ocean, with peak fluxes 10-9 kyr BP one order of magnitude higher than at other times in the Holocene.</p><p>It is likely that the remobilization of permafrost OC by flooding of the Siberian shelf released climate-significant amounts of dormant OC into active biogeochemical cycling and the atmosphere. Previous studies estimated that a pool of 300-600 Pg OC was held in permafrost covering Arctic Ocean shelves during the last glacial maximum; one can only speculate about its whereabouts after the deglaciation. Present und future reconstructions of historical remobilization of permafrost OC will help to understand how important permafrost thawing is to large-scale carbon cycling.</p>


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2021 ◽  
Author(s):  
Elisie Kåresdotter ◽  
Zahra Kalantari

<p>Wetlands as large-scale nature-based solutions (NBS) provide multiple ecosystem services of local, regional, and global importance. Knowledge concerning location and vulnerability of wetlands, specifically in the Arctic, is vital to understand and assess the current status and future potential changes in the Arctic. Using available high-resolution wetland databases together with datasets on soil wetness and soil types, we created the first high-resolution map with full coverage of Arctic wetlands. Arctic wetlands' vulnerability is assessed for the years 2050, 2075, and 2100 by utilizing datasets of permafrost extent and projected mean annual average temperature from HadGEM2-ES climate model outputs for three change scenarios (RCP2.6, 4.5, and 8.5). With approximately 25% of Arctic landmass covered with wetlands and 99% being in permafrost areas, Arctic wetlands are highly vulnerable to changes in all scenarios, apart from RCP2.6 where wetlands remain largely stable. Climate change threatens Arctic wetlands and can impact wetland functions and services. These changes can adversely affect the multiple services this sort of NBS can provide in terms of great social, economic, and environmental benefits to human beings. Consequently, negative changes in Arctic wetland ecosystems can escalate land-use conflicts resulting from natural capital exploitation when new areas become more accessible for use. Limiting changes to Arctic wetlands can help maintain their ecosystem services and limit societal challenges arising from thawing permafrost wetlands, especially for indigenous populations dependent on their ecosystem services. This study highlights areas subject to changes and provides useful information to better plan for a sustainable and social-ecological resilient Arctic.</p><p>Keywords: Arctic wetlands, permafrost thaw, regime shift vulnerability, climate projection</p>


Science ◽  
1974 ◽  
Vol 186 (4166) ◽  
pp. 843-845
Author(s):  
R. C. Ayers ◽  
H. O. Jahns ◽  
J. L. Glaeser

2008 ◽  
Vol 38 (12) ◽  
pp. 2685-2703 ◽  
Author(s):  
Signe Aaboe ◽  
Ole Anders Nøst

Abstract A linear diagnostic model, solving for the time-mean large-scale circulation in the Nordic seas and Arctic Ocean, is presented. Solutions on depth contours that close within the Nordic seas and Arctic Ocean are found from vorticity balances integrated over the areas enclosed by the contours. Climatological data for wind stress and hydrography are used as input to the model, and the bottom geostrophic flow is assumed to follow depth contours. Comparison against velocity observations shows that the simplified dynamics in the model capture many aspects of the large-scale circulation. Special attention is given to the dynamical effects of an along-isobath varying bottom density, which leads to a transformation between barotropic and baroclinic transport. Along the continental slope, enclosing both the Nordic seas and Arctic Ocean, the along-slope barotropic transport has a maximum in the Nordic seas and a minimum in the Canadian Basin with a difference of 9 Sv (1 Sv ≡ 106 m3 s−1) between the two. This is caused by the relatively lower bottom densities in the Canadian Basin compared to the Nordic seas and suggests that most of the barotropic transport entering the Arctic Ocean through the Fram Strait is transformed to baroclinic transport. A conversion from barotropic to baroclinic flow may be highly important for the slope–basin exchange in the Nordic seas and Arctic Ocean. The model has obvious shortcomings due to its simplicity. However, the simplified physics and the agreement with observations make this model an excellent framework for understanding the large-scale circulation in the Nordic seas and Arctic Ocean.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2021 ◽  
Author(s):  
Flor Vermassen ◽  
Helen K. Coxall ◽  
Gabriel West ◽  
Matt O'Regan

<p>Harsh environmental and taphonomic conditions in the central Arctic Ocean make age-modelling for Quaternary palaeoclimate reconstructions challenging. Pleistocene age models in the Arctic have relied heavily on cyclostratigraphy using lithologic variability tied to relatively poorly calibrated foraminifera biostratigraphic events. Recently, the identification of <em>Pseudoemiliania lacunosa</em> in a sediment core from the Lomonosov Ridge, a coccolithophore that went extinct during marine isotope stage (MIS) 12 (478-424 ka), has been used to delineate glacial-interglacial units back to MIS 14 (~500 ka BP). Here we present a comparative study on how this nannofossil biostratigraphy fits with existing foraminifer biohorizons that are recognised in central Arctic Ocean sediments. A new core from the Alpha Ridge is presented, together with its lithologic variability and down-core compositional changes in planktonic and benthic foraminifera. The core exhibits an interval dominated by <em>Turborotalita egelida</em>, a planktonic foraminifer that is increasingly being adopted as a marker for MIS11 in sediment cores from the Amerasian Basin of the Arctic Ocean. We show that the new age-constraints provided by calcareous nannofossils are difficult to reconcile with the proposed MIS 11 age for the <em>T. egelida</em> horizon. Instead, the emerging litho- and coccolith biostratigraphy implies that Amerasian Basin sediments predating MIS5 are older than the egelida-based age models suggest, i.e. that the <em>T. egelida</em> Zone is older than MIS11. These results expose uncertainties regarding the age determination of glacial-interglacial cycles in the Amerasian basin and point out that future work is required to reconcile the micro- and nannofossil biostratigraphy of the Amerasian and Eurasian basin.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 474 ◽  
Author(s):  
Min-Hee Lee ◽  
Joo-Hong Kim

Contribution of extra-tropical synoptic cyclones to the formation of mean summer atmospheric circulation patterns in the Arctic domain (≥60° N) was investigated by clustering dominant Arctic circulation patterns based on daily mean sea-level pressure using self-organizing maps (SOMs). Three SOM patterns were identified; one pattern had prevalent low-pressure anomalies in the Arctic Circle (SOM1), while two exhibited opposite dipoles with primary high-pressure anomalies covering the Arctic Ocean (SOM2 and SOM3). The time series of their occurrence frequencies demonstrated the largest inter-annual variation in SOM1, a slight decreasing trend in SOM2, and the abrupt upswing after 2007 in SOM3. Analyses of synoptic cyclone activity using the cyclone track data confirmed the vital contribution of synoptic cyclones to the formation of large-scale patterns. Arctic cyclone activity was enhanced in the SOM1, which was consistent with the meridional temperature gradient increases over the land–Arctic ocean boundaries co-located with major cyclone pathways. The composite daily synoptic evolution of each SOM revealed that all three SOMs persisted for less than five days on average. These evolutionary short-term weather patterns have substantial variability at inter-annual and longer timescales. Therefore, the synoptic-scale activity is central to forming the seasonal-mean climate of the Arctic.


Sign in / Sign up

Export Citation Format

Share Document