scholarly journals Baseline data for monitoring geomorphological effects of glacier lake outburst flood: a very-high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland

2021 ◽  
Vol 13 (11) ◽  
pp. 5293-5309
Author(s):  
Aleksandra M. Tomczyk ◽  
Marek W. Ewertowski

Abstract. The polar regions experience widespread transformations, such that efficient methods are needed to monitor and understand Arctic landscape changes in response to climate warming and low-frequency, high-magnitude hydrological and geomorphological events. One example of such events, capable of causing serious landscape changes, is glacier lake outburst floods. On 6 August 2017, a flood event related to glacial lake outburst affected the Zackenberg River (NE Greenland). Here, we provided a very-high-resolution dataset representing unique time series of data captured immediately before (5 August 2017), during (6 August 2017), and after (8 August 2017) the flood. Our dataset covers a 2.1 km long distal section of the Zackenberg River. The available files comprise (1) unprocessed images captured using an unmanned aerial vehicle (UAV; https://doi.org/10.5281/zenodo.4495282, Tomczyk and Ewertowski, 2021a) and (2) results of structure-from-motion (SfM) processing (orthomosaics, digital elevation models, and hillshade models in a raster format), uncertainty assessments (precision maps), and effects of geomorphological mapping in vector formats (https://doi.org/10.5281/zenodo.4498296, Tomczyk and Ewertowski, 2021b). Potential applications of the presented dataset include (1) assessment and quantification of landscape changes as an immediate result of a glacier lake outburst flood; (2) long-term monitoring of high-Arctic river valley development (in conjunction with other datasets); (3) establishing a baseline for quantification of geomorphological impacts of future glacier lake outburst floods; (4) assessment of geohazards related to bank erosion and debris flow development (hazards for research station infrastructure – station buildings and bridge); (5) monitoring of permafrost degradation; and (6) modelling flood impacts on river ecosystem, transport capacity, and channel stability.

2021 ◽  
Author(s):  
Aleksandra M. Tomczyk ◽  
Marek W. Ewertowski

Abstract. The Arctic regions experience intense transformations, such that efficient methods are needed to monitor and understand Arcticlandscape changes in response to climate warming and low-frequency high-magnitude events. One example of such events,capable of causing serious landscape changes, is glacier lake outburst floods. On 6 August 2017, a flood event related to glacial lake outburst affected the Zackenberg River (NE Greenland). Here, we provided a very high-resolution dataset representingunique time-series of data captured immediately before (5 August 2017), during (6 August 2017), and after (8 August 2017)the flood. Our dataset covers a 2.1-km-long distal section of the Zackenberg River. The available files comprise: (1)unprocessed images captured using an unmanned aerial vehicle (UAV): https://doi.org/10.5281/zenodo.4495282 (Tomczykand Ewertowski, 2021a); and (2) results of structure-from-motion (SfM) processing (orthomosaics, digital elevation models, and hillshade models in a raster format), uncertainty assessments (precision maps) and effects of geomorphological mappingin vector formats: https://doi.org/10.5281/zenodo.4498296 (Tomczyk and Ewertowski, 2021b). Potential applications of thepresented dataset include: (1) assessment and quantification of landscape changes as an immediate result of glacier lakeoutburst flood; (2) long-term monitoring of high-Arctic river valley development (in conjunction with other datasets); (3)establishing a baseline for quantification of geomorphological impacts of future glacier lake outburst floods; (4) assessment of geohazards related to bank erosion and debris flow development (hazards for research station infrastructure – station buildingsand bridge); (5) monitoring of permafrost degradation; and (6) modelling flood impacts on river ecosystem, transport capacity,and channel stability.  


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


2019 ◽  
Vol 232 ◽  
pp. 111300
Author(s):  
Xiaogang Song ◽  
Nana Han ◽  
Xinjian Shan ◽  
Chisheng Wang ◽  
Yingfeng Zhang ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1397
Author(s):  
William N. Setzer ◽  
Lam Duong ◽  
Trang Pham ◽  
Ambika Poudel ◽  
Cuong Nguyen ◽  
...  

Virginia mountain mint (Pycnanthemum virginianum) is a peppermint-flavored aromatic herb of the Lamiaceae and is mainly used for culinary, medicinal, aromatic, and ornamental purposes. North Alabama’s climate is conducive to growing mint for essential oils used in culinary, confectionery, and medicinal purposes. There is, however, a need for varieties of P. virginianum that can be adapted and easily grown for production in North Alabama. Towards this end, four field-grown varieties with three harvesting times (M1H1, M1H2, M1H3; M2H1, M2H2, M2H3; M3H1, M3H2, M3H3, M4H1, M4H2, M4H3) were evaluated for relative differences in essential oil yield and composition. Thirty-day-old greenhouse-grown plants of the four varieties were transplanted on raised beds in the field at the Alabama A & M University Research Station in North Alabama. The plots were arranged in a randomized complete block with three replications. The study’s objective was to compare the four varieties for essential oil yield and their composition at three harvest times, 135, 155, and 170 days after planting (DAP). Essential oils were obtained by hydrodistillation with continuous extraction with dichloromethane using a Likens–Nickerson apparatus and analyzed by gas chromatographic techniques. At the first harvest, the essential oil yield of the four varieties showed that M1H1 had a yield of 1.15%, higher than M2H1, M3H1, and M4H1 with 0.91, 0.76, and 1.03%, respectively. The isomenthone concentrations increased dramatically through the season in M1 (M1H1, M1H2, M1H3) by 19.93, 54.7, and 69.31%, and M3 (M3H1, M3H2, M3H3) by 1.81, 48.02, and 65.83%, respectively. However, it increased only slightly in M2 and M4. The thymol concentration decreased slightly but not significantly in all four varieties; the thymol in M2 and M4 was very high compared with M1 and M3. The study showed that mountain mint offers potential for production in North Alabama. Two varieties, M1 and M3, merit further studies to determine yield stability, essential oil yield, composition, and cultivation development practices.


2021 ◽  
Vol 13 (13) ◽  
pp. 2508
Author(s):  
Loredana Oreti ◽  
Diego Giuliarelli ◽  
Antonio Tomao ◽  
Anna Barbati

The importance of mixed forests is increasingly recognized on a scientific level, due to their greater productivity and efficiency in resource use, compared to pure stands. However, a reliable quantification of the actual spatial extent of mixed stands on a fine spatial scale is still lacking. Indeed, classification and mapping of mixed populations, especially with semi-automatic procedures, has been a challenging issue up to date. The main objective of this study is to evaluate the potential of Object-Based Image Analysis (OBIA) and Very-High-Resolution imagery (VHR) to detect and map mixed forests of broadleaves and coniferous trees with a Minimum Mapping Unit (MMU) of 500 m2. This study evaluates segmentation-based classification paired with non-parametric method K- nearest-neighbors (K-NN), trained with a dataset independent from the validation one. The forest area mapped as mixed forest canopies in the study area amounts to 11%, with an overall accuracy being equal to 85% and K of 0.78. Better levels of user and producer accuracies (85–93%) are reached in conifer and broadleaved dominated stands. The study findings demonstrate that the very high resolution images (0.20 m of spatial resolutions) can be reliably used to detect the fine-grained pattern of rare mixed forests, thus supporting the monitoring and management of forest resources also on fine spatial scales.


2021 ◽  
pp. 1-11
Author(s):  
Yasser Mostafa ◽  
Mahmoud Nokrashy O. Ali ◽  
Faten Mostafa ◽  
Mohamed Yousef

Sign in / Sign up

Export Citation Format

Share Document