scholarly journals Heat stored in the Earth system: Where does the energy go? The GCOS Earth heat inventory team

2020 ◽  
Author(s):  
Karina von Schuckmann ◽  
Lijing Cheng ◽  
Matthew D. Palmer ◽  
Caterina Tassone ◽  
Valentin Aich ◽  
...  

Abstract. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. This Earth Energy Imbalance (EEI) is a fundamental metric of climate change. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system – is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory, and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the past 58 years, with a total heat gain of 393 ± 40 ZJ, which is equivalent to a heating rate of 0.42 ± 0.04 W m−2. The majority of the heat gain (89 %) takes place in the global ocean (0–700 m: 53 %; 700–2000 m: 28 %; > 2000 m: 8 %), while it amounts to 6 % for the land heat gain, to 4 % available for the melting of grounded and floating ice, and to 1 % for atmospheric warming. These new estimates indicate a larger contribution of land and ice heat gain (10 % in total) compared to previous estimates (7 %). There is a regime shift of the Earth heat inventory over the past 2 decades, which appears to be predominantly driven by heat sequestration into the deeper layers of the global ocean, and a doubling of heat gain in the atmosphere. However, a major challenge is to reduce uncertainties in the Earth heat inventory, which can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, as well as to establish an international framework for concerted multi-disciplinary research of the Earth heat inventory. Earth heat inventory is published at DKRZ (https://www.dkrz.de/) under the doi: https://doi.org/10.26050/WDCC/GCOS_EHI_EXP (von Schuckmann et al., 2020).

2021 ◽  
Author(s):  
Karina von Schuckmann

<p>Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This simple number, the Earth energy imbalance (EEI), is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control. Combining multiple measurements and approaches in an optimal way holds considerable promise for estimating EEI and continued quantification and reduced uncertainties can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, advance on instrumental limitations, and the establishment of an international framework for concerted multidisciplinary research effort. This talk will provide an overview on the different approaches and their challenges for estimating the EEI. A particular emphasis will be drawn on the heat gain of the Earth system over the past half of a century – and particularly how much and where the heat is distributed – which is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are critical concerns for society.</p><p> </p>


2020 ◽  
Vol 12 (3) ◽  
pp. 2013-2041
Author(s):  
Karina von Schuckmann ◽  
Lijing Cheng ◽  
Matthew D. Palmer ◽  
James Hansen ◽  
Caterina Tassone ◽  
...  

Abstract. Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the period 1971–2018, with a total heat gain of 358±37 ZJ, which is equivalent to a global heating rate of 0.47±0.1 W m−2. Over the period 1971–2018 (2010–2018), the majority of heat gain is reported for the global ocean with 89 % (90 %), with 52 % for both periods in the upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 % (5 %) over these periods, 4 % (3 %) is available for the melting of grounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing: the EEI amounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87 W m−2, bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOI https://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).


Author(s):  
James C. G. Walker

Our world is a product of complex interactions among atmosphere, ocean, rocks, and life that Earth system science seeks to understand. Earth system science deals with such properties of the environment as composition and climate and populations and the ways in which they affect one another. It also concerns how these interactions caused environmental properties to change in the past and how they may change in the future. The Earth system can be studied quantitatively because its properties can be represented by numbers. At present, however, most of the numbers in Earth system science are observational rather than theoretical, and so our description of the Earth system's objective properties is much more complete than our quantitative understanding of how the system works. Quantitative theoretical understanding grows out of a simulation of the system or parts of the system and numerical experimentation with simulated systems. Simulation experiments can answer questions like What is the effect of this feature? or What would happen in that situation? Simulation also gives meaning to observations by showing how they may be related. As an illustration, consider that area of Earth system science known as global change. There is now an unambiguous observational record of global change in many important areas of the environment. For elements of climate and atmospheric composition this record is based on direct measurement over periods of a decade to a century. For other environmental variables, particularly those related to the composition of the ocean, the record of change consists of measurements of isotopic or trace-element composition of sediments deposited over millions of years. This evidence of global change is profoundly affecting our view of what the future holds in store for us and what options exist. It should also influence our understanding of how the interaction of biota and environment has changed the course of Earth history. But despite the importance of global change to our prospects for the future and our understanding of the past, the mechanisms of change are little understood. There are many speculative suggestions about the causes of change but few quantitative and convincing tests of these suggestions.


Science ◽  
2017 ◽  
Vol 356 (6345) ◽  
pp. 1356-1362 ◽  
Author(s):  
N. Andela ◽  
D. C. Morton ◽  
L. Giglio ◽  
Y. Chen ◽  
G. R. van der Werf ◽  
...  

Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes.


2020 ◽  
Author(s):  
Denis-Didier Rousseau ◽  
Susanna Barbosa ◽  
Witold Bagniewski ◽  
Niklas Boers ◽  
Eliza Cook ◽  
...  

<p>Although the Earth system is described to react relatively abruptly to present anthropogenic forcings, the notion of abruptness remains questionable as it refers to a time scale that is difficult to constrain properly. Recognizing this issue, the tipping elements as listed in Lenton et al. (2008) rely on long-term observations under controlled conditions, which enabled the associated tipping points to be identified. For example, there is evidence nowadays that if the rate of deforestation from forest fires and the climate change does not decrease, the Amazonian forest will reach a tipping point towards savanna (Nobre, 2019), which would impact the regional and global climate systems as well as various other ecosystems, directly or indirectly (Magalhães et al., 2020). However, if the present tipping elements, which are now evidenced, are mostly related to the present climate change and thus directly or indirectly related to anthropogenic forcing, their interpretation must still rely on former cases detected in the past, and especially from studies of abrupt climatic transitions evidenced in paleoclimate proxy records. Moreover, recent studies of past changes have shown that addressing abrupt transitions in the past raises the issue of data quality of individual records, including the precision of the time scale and the quantification of associated uncertainties. Investigating past abrupt transitions and the mechanisms involved requires the best data quality possible. This can be a serious limitation when considering the sparse spatial coverage of high resolution paleo-records where dating is critical and corresponding errors often challenging to control. In theory, this would therefore almost limit our investigations to ice-core records of the last climate cycle, because they offer the best possible time resolution. However, evidence shows that abrupt transitions can also be identified in deeper time with lower resolution records, but still revealing changes or transitions that have impacted the dynamics of the Earth system globally. TiPES Work Package 1 will address these issues and collect paleorecords permitting to evidence the temporal behavior of tipping elements in past climates, including several examples.</p><p>Lenton T. et al. (2008). PNAS 105, 1786-1793.</p><p>Nobre C. (2019). Nature 574, 455.</p><p>Magalhães N.d. et al. (2020). Sci. Rep. 16914 (2019) doi:10.1038/s41598-019-53284-1</p><p>This work is performed under the TiPES project funded by the European Union’s Horizon 2020 research and innovation program under grant agreement # 820970 <https://tipes.sites.ku.dk/></p>


2020 ◽  
Author(s):  
Claire Belcher

<p>Fire and vegetation have a dual interaction with each other, whilst also both influencing the environment and atmosphere. For example, fire regimes are themselves controlled by atmospheric conditions, atmospheric composition, climate and the type of vegetation. Whilst, the effects of fires, the products and emissions they generate influence biogeochemical cycles and long-term Earth system processes through their impacts on nutrient cycles and by altering the composition and distribution of biomes. Hence fire is more than a simple agent of disturbance and has a multitude of complex feedbacks.</p><p>Wildfires have shaped our ecosystems and Earth system processes for some 420 million years. For example the presence of and changes in fire frequency and behaviour on evolutionary timescales has influenced the physiological traits of plants such that many ecologists have interpreted them as adaptations to fire. For example, serotiny in the Pine lineage is believed to have evolved millions of years ago in the Late Cretaceous period, where wildfires were both frequent and intense. Such traits seemingly continue to allow some plants to succeed in fire prone areas. However, humans have entirely altered ignition patterns, with some 95% of fires being started by man; we have altered the connectivity of fuels in landscapes, species composition and fuel structure. Yet we have limited understanding to what extent we have disrupted fire feedbacks to the Earth system. This lies in large part because we have not yet well understood what natural feedbacks fire has had on our planet throughout its history.</p><p>In this talk I will explore some of the critical history of fire and some of the processes that fire appears to regulate in order to pose the question - are fires a critical resource that secures the long-term balance of the Earth system that keeps our planet habitable to man?</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2018 ◽  
Vol 115 (33) ◽  
pp. 8252-8259 ◽  
Author(s):  
Will Steffen ◽  
Johan Rockström ◽  
Katherine Richardson ◽  
Timothy M. Lenton ◽  
Carl Folke ◽  
...  

We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere, climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values.


2018 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Rita Di Giovambattista ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
...  

Abstract. Geosystemics (De Santis 2009, 2014) studies the Earth system as a whole focusing on the possible coupling among the Earth layers (the so called geo-layers), and using universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms. Its main objective is to understand the particular phenomenon of interest from a holistic point of view. In this paper we will deal with earthquakes, considered as a long term chain of processes involving, not only the interaction between different components of the Earth’s interior, but also the coupling of the solid earth with the above neutral and ionized atmosphere, and finally culminating with the main rupture along the fault of concern (De Santis et al., 2015a). Some case studies (particular emphasis is given to recent central Italy earthquakes) will be discussed in the frame of the geosystemic approach for better understanding the physics of the underlying complex dynamical system.


2012 ◽  
Vol 8 (4) ◽  
pp. 1169-1175 ◽  
Author(s):  
J. Liu ◽  
M. Song ◽  
Y. Hu ◽  
X. Ren

Abstract. Recent studies demonstrate that the Hadley Circulation has intensified and expanded for the past three decades, which has important implications for subtropical societies and may lead to profound changes in global climate. However, the robustness of this intensification and expansion that should be considered when interpreting long-term changes of the Hadley Circulation is still a matter of debate. It also remains largely unknown how the Hadley Circulation has evolved over longer periods. Here, we present long-term variability of the Hadley Circulation using the 20th Century Reanalysis. It shows a slight strengthening and widening of the Hadley Circulation since the late 1970s, which is not inconsistent with recent assessments. However, over centennial timescales (1871–2008), the Hadley Circulation shows a tendency towards a more intense and narrower state. More importantly, the width of the Hadley Circulation might have not yet completed a life-cycle since 1871. The strength and width of the Hadley Circulation during the late 19th to early 20th century show strong natural variability, exceeding variability that coincides with global warming in recent decades. These findings raise the question of whether the recent change in the Hadley Circulation is primarily attributed to greenhouse warming or to a long-period oscillation of the Hadley Circulation – substantially longer than that observed in previous studies.


Sign in / Sign up

Export Citation Format

Share Document