scholarly journals Dynamics of shallow wakes on gravel-bed floodplains: Data set from field experiments

2020 ◽  
Author(s):  
Oleksandra O. Shumilova ◽  
Alexander N. Sukhodolov ◽  
George S. Constantinescu ◽  
Bruce J. MacVicar

Abstract. Natural dynamics of river floodplains are driven by the interaction of flow and patchy riparian vegetation, which has implications for riverbed morphology and diversity of riparian habitats. Fundamental mechanisms affecting the dynamics of flow in such systems are still not fully understood due to a lack of experimental data collected in natural environments that are free of scaling effects present in laboratory studies. Here we present a detailed dataset on hydrodynamics of shallow wake flows that develop behind solid and porous obstructions. The dataset was collected during a field experimental campaign carried out in a side branch of the gravel-bed Tagliamento River in Northeast Italy. The dataset consists of thirty experimental runs in which we varied the diameter of the surface-mounted obstruction, its solid volume fraction, and the porosity at the leading edge, the object's submergence, and the approach velocity. Each run included: (1) measurements of mean velocity and turbulence in the longitudinal transect through the centreline of the flow with up to 25–30 sampling locations, and from 8 to 10 lateral profiles measured at 14 locations; (2) detailed surveys of the free surface topography; and (3) flow visualizations and video-recordings of the wakes patterns using a drone. The field scale of the experimental setup, the precise control of the approaching velocity, configuration of models, and the natural gravel-bed context for this experiment makes this data set unique. Besides enabling the examination of scaling effects, these data also allow the verification of numerical models and provide insight into the effects of driftwood accumulations on the dynamics of wakes. Data are made available as open access via the Zenodo portal (Shumilova et al. 2020) with DOI https://doi.org/10.5281/zenodo.3968748.

2021 ◽  
Vol 13 (4) ◽  
pp. 1519-1529
Author(s):  
Oleksandra O. Shumilova ◽  
Alexander N. Sukhodolov ◽  
George S. Constantinescu ◽  
Bruce J. MacVicar

Abstract. Natural dynamics of river floodplains are driven by the interaction of flow and patchy riparian vegetation, which has implications for channel morphology and diversity of riparian habitats. Fundamental mechanisms affecting the dynamics of flow in such systems are still not fully understood due to a lack of experimental data collected in natural environments that are free of the unavoidable scaling effects in laboratory studies. Here we present a detailed dataset on the hydrodynamics of shallow wake flows that develop behind solid and porous obstructions. The dataset was collected during a field experimental campaign carried out in a side branch of the gravel-bed Tagliamento River in northeast Italy. The dataset consists of 30 experimental runs in which we varied the diameter of the surface-mounted obstruction, its solid volume fraction, its porosity at the leading edge, the object's submergence and the approach velocity. Each run included: (1) measurements of mean velocity and turbulence in the longitudinal transect through the centreline of the flow with up to 25–30 sampling locations and from 8 to 10 lateral profiles measured at 14 locations, (2) detailed surveys of the free surface topography and (3) flow visualizations and video recordings of the wake patterns using a drone. The field scale of the experimental setup, precise control of the approach velocity, configuration of models and natural gravel-bed context for this experiment makes this dataset unique. Besides enabling the examination of scaling effects, these data also allow the verification of numerical models and provide insight into the effects of driftwood accumulations on the dynamics of wakes. Data are available with open access via the Zenodo portal (Shumilova et al., 2020) with DOI https://doi.org/10.5281/zenodo.3968748.


2021 ◽  
Vol 249 ◽  
pp. 03039
Author(s):  
James Jenkins ◽  
Diego Berzi

We first phrase a boundary-value problem for a dense, steady, fully-developed, gravitational flow of identical inelastic spheres over in inclined bumpy base in the absence of sidewalls. We then obtain approximate analytical solutions for the profiles of the solid volume fraction, the strength of the velocity fluctuations, and the mean velocity of the flow. We compare these with those obtained in numerical solutions of the exact equations.


2016 ◽  
Vol 20 (5) ◽  
pp. 1575-1584 ◽  
Author(s):  
Taher Armaghani ◽  
Mohammad Maghrebi ◽  
Farhad Talebi ◽  
Baqaie Saryazdi

In this article, a numerical study is carried out to analyze the effect of nanoparticle volume fraction over flow and thermal characteristics of laminar 2-D plane jet. Al2O3-water and TiO2-water nanofluids are considered in this investigation with lowest and highest values of particle volume concentration equals to 0 and 0.02 respectively. This paper propose four correlations for describing the relation between the solid volume fraction, ?t and ?u. The results show that the cross stream thermal diffusion depth and cross stream hydraulic diffusion depth are increased when particles volume concentration is increased and mean temperature and mean velocity decreases when the solid volume fraction is increased. The effects of nanoparticle volume fraction in velocity and temperature time histories are also studied and discussed.


1996 ◽  
Vol 316 ◽  
pp. 197-221 ◽  
Author(s):  
J. Cao ◽  
G. Ahmadi ◽  
M. Massoudi

Gravity-driven granular flow of slightly frictional particles down an inclined, bumpy chute is studied. A modified kinetic model which includes the frictional energy loss effects is used, and the boundary conditions for a bumpy wall with small friction are derived by ensuring the balance of momentum and energy. At the free surface, the condition of vanishing of the solid volume fraction is used. The mean velocity, the fluctuation kinetic energy and the solid volume fraction profiles are evaluated. It is shown that steady granular gravity flow down a bumpy frictional chute could be achieved at arbitrary inclination angles. The computational results also show that the slip velocity may vary considerably depending on the granular layer height, the surface boundary roughness, the friction coefficient and the inclination angles. The model predictions are compared with the existing experimental and simulation data, and good agreement is observed. In particular, the model can well predicate the features of the variation of solid volume fraction and fluctuation energy profiles for different particle–wall friction coefficients and wall roughnesses.


Author(s):  
Peter Bachant ◽  
Martin Wosnik

Experiments were performed with a 1 m diameter, 1 m tall three-bladed vertical axis turbine in a towing tank. Rotor power and drag (or thrust) were measured at a tow speed of 1 m/s, corresponding to a turbine diameter Reynolds number ReD = 106 and an approximate blade chord Reynolds number Rec = λU∞c/ν ∼ 105. Mechanical exergy efficiency estimates were computed from power and drag measurements using an actuator disk approach. Characteristics of the turbine’s near-wake were measured at one turbine diameter downstream. Variation of all three mean and fluctuating velocity components in the vertical and cross-stream directions were measured at peak turbine power output via acoustic Doppler velocimeter. The effect of tip speed ratio on near-wake mean velocity was observed at the turbine center line. Transverse profiles of mean velocity, fluctuating velocity, and Reynolds stresses were also measured at the turbine’s quarter height for two tip speed ratios of interest. Results are compared and contrasted with previous lower Reynolds number studies, and will provide a detailed data set for validation of numerical models.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adel Alblawi ◽  
Saba Keyani ◽  
S. Nadeem ◽  
Alibek Issakhov ◽  
Ibrahim M. Alarifi

Objective: In this paper, we consider a model that describes the ciliary beating in the form of metachronal waves along with the effects of Magnetohydrodynamic fluid over a curved channel with slip effects. This work aims at evaluating the effect of Magnetohydrodynamic (MHD) on the steady two dimensional (2-D) mixed convection flow induced in carbon nanotubes. The work is done for both the single wall nanotube and multiple wall nanotube. The right wall and the left wall possess a metachronal wave that is travelling along the outer boundary of the channel. Methods: The wavelength is considered as very large for cilia induced MHD flow. The governing linear coupled equations are simplified by considering the approximations of long wavelength and small Reynolds number. Exact solutions are obtained for temperature and velocity profile. The analytical expressions for the pressure gradient and wall shear stresses are obtained. Term for pressure rise is obtained by applying Numerical integration method. Results: Numerical results of velocity profile are mentioned in a table form, for various values of solid volume fraction, curvature, Hartmann number [M] and Casson fluid parameter [ζ]. Final section of this paper is devoted to discussing the graphical results of temperature, pressure gradient, pressure rise, shear stresses and stream functions. Conclusion: Velocity profile near the right wall of the channel decreases when we add nanoparticles into our base fluid, whereas an opposite behaviour is depicted near the left wall due to ciliated tips whereas the temperature is an increasing function of B and ߛ and decreasing function of ߶.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anum Shafiq ◽  
Tabassum Naz Sindhu ◽  
Qasem M. Al-Mdallal

AbstractThe current research explores incremental effect of thermal radiation on heat transfer improvement corresponds to Darcy–Forchheimer (DF) flow of carbon nanotubes along a stretched rotating surface using RSM. Casson carbon nanotubes’ constructed model in boundary layer flow is being investigated with implications of both single-walled CNTs and multi-walled CNTs. Water and Ethylene glycol are considered a basic fluid. The heat transfer rate is scrutinized via convective condition. Outcomes are observed and evaluated for both SWCNTs and MWCNTs. The Runge–Kutta Fehlberg technique of shooting is utilized to numerically solve transformed nonlinear ordinary differential system. The output parameters of interest are presumed to depend on governing input variables. In addition, sensitivity study is incorporated. It is noted that sensitivity of SFC via SWCNT-Water becomes higher by increasing values of permeability number. Additionaly, sensitivity of SFC via SWCNT-water towards the permeability number is higher than the solid volume fraction for medium and higher permeability levels. It is also noted that sensitivity of SFC (SWCNT-Ethylene-glycol) towards volume fraction is higher for increasing permeability as well as inertia coefficient. Additionally, the sensitivity of LNN towards the Solid volume fraction is higher than the radiation and Biot number for all levels of Biot number. The findings will provide initial direction for future device manufacturing.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


Sign in / Sign up

Export Citation Format

Share Document