scholarly journals Integrated ecological monitoring in Wales: the Glastir Monitoring and Evaluation Programme field survey

2021 ◽  
Author(s):  
Claire M. Wood ◽  
Jamie Alison ◽  
Marc S. Botham ◽  
Annette Burden ◽  
Francois Edwards ◽  
...  

Abstract. The Glastir Monitoring and Evaluation Programme (GMEP) ran from 2013 until 2016, and was probably the most comprehensive programme of ecological study ever undertaken at a national scale in Wales. The programme aimed to (1) set up an evaluation of the environmental effects of the Glastir agri-environment scheme and (2) quantify environmental status and trends across the wider countryside of Wales. The focus was on outcomes for climate change mitigation, biodiversity, soil and water quality, woodland expansion and cultural landscapes. As such, GMEP included a large field survey component, collecting data on a range of elements including vegetation, land cover and use, soils, freshwaters, birds and insect pollinators from up to 300 1 km squares throughout Wales. The field survey capitalised upon the UKCEH Countryside Survey of Great Britain, which has provided an extensive set of repeated, standardised ecological measurements since 1978. The design of both GMEP and the UKCEH Countryside Survey involved stratified-random sampling of squares from a 1 km grid, ensuring proportional representation from land classes with distinct climate, geology and physical geography. Data were collected from different land cover types and landscape features by trained professional surveyors, following standardised and published protocols. Thus, GMEP was designed so that surveys could be repeated at regular intervals to monitor the Welsh environment, including the impacts of agri-environment interventions. One such repeat survey is scheduled for 2021 under the Environment and Rural Affairs Monitoring and Modelling Programme (ERAMMP). Data from GMEP have been used to address many applied policy questions, but there is major potential for further analyses. The precise locations of data collection are not publicly available, largely for reasons of landowner confidentiality. However, the wide variety of available datasets can be (1) analysed at coarse spatial resolutions and (2) linked to each other based on square-level and plot-level identifiers, allowing exploration of relationships, trade-offs and synergies. This paper describes the key sets of raw data arising from the field survey at co-located sites, 2013 to 2016. Data from each of these survey elements are available with the following Digital Object Identifiers. Landscape features, https://doi.org/10.5285/82c63533-529e-47b9-8e78-51b27028cc7f, https://doi.org/10.5285/9f8d9cc6-b552-4c8b-af09-e92743cdd3de, https://doi.org/10.5285/f481c6bf-5774-4df8-8776-c4d7bf059d40; Vegetation plots, https://doi.org/10.5285/71d3619c-4439-4c9e-84dc-3ca873d7f5cc; Topsoil physico-chemical properties, https://doi.org/10.5285/0fa51dc6-1537-4ad6-9d06-e476c137ed09; Topsoil meso-fauna, https://doi.org/10.5285/1c5cf317-2f03-4fef-b060-9eccbb4d9c21; Topsoil particle size distribution https://doi.org/10.5285/d6c3cc3c-a7b7-48b2-9e61-d07454639656; Headwater stream quality metrics, https://doi.org/10.5285/e305fa80-3d38-4576-beef-f6546fad5d45 ; Pond quality metrics, https://doi.org/10.5285/687b38d3-2278-41a0-9317-2c7595d6b882; Insect pollinator and flower data, https://doi.org/10.5285/3c8f4e46-bf6c-4ea1-9340-571fede26ee8; Bird counts, https://doi.org/10.5285/31da0a94-62be-47b3-b76e-4bdef3037360.

2021 ◽  
Vol 13 (8) ◽  
pp. 4155-4173
Author(s):  
Claire M. Wood ◽  
Jamie Alison ◽  
Marc S. Botham ◽  
Annette Burden ◽  
François Edwards ◽  
...  

Abstract. The Glastir Monitoring and Evaluation Programme (GMEP) ran from 2013 until 2016 and was probably the most comprehensive programme of ecological study ever undertaken at a national scale in Wales. The programme aimed to (1) set up an evaluation of the environmental effects of the Glastir agri-environment scheme and (2) quantify environmental status and trends across the wider countryside of Wales. The focus was on outcomes for climate change mitigation, biodiversity, soil and water quality, woodland expansion, and cultural landscapes. As such, GMEP included a large field-survey component, collecting data on a range of elements including vegetation, land cover and use, soils, freshwaters, birds, and insect pollinators from up to three-hundred 1 km survey squares throughout Wales. The field survey capitalised upon the UK Centre for Ecology & Hydrology (UKCEH) Countryside Survey of Great Britain, which has provided an extensive set of repeated, standardised ecological measurements since 1978. The design of both GMEP and the UKCEH Countryside Survey involved stratified-random sampling of squares from a 1 km grid, ensuring proportional representation from land classes with distinct climate, geology and physical geography. Data were collected from different land cover types and landscape features by trained professional surveyors, following standardised and published protocols. Thus, GMEP was designed so that surveys could be repeated at regular intervals to monitor the Welsh environment, including the impacts of agri-environment interventions. One such repeat survey is scheduled for 2021 under the Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP). Data from GMEP have been used to address many applied policy questions, but there is major potential for further analyses. The precise locations of data collection are not publicly available, largely for reasons of landowner confidentiality. However, the wide variety of available datasets can be (1) analysed at coarse spatial resolutions and (2) linked to each other based on square-level and plot-level identifiers, allowing exploration of relationships, trade-offs and synergies. This paper describes the key sets of raw data arising from the field survey at co-located sites (2013 to 2016). Data from each of these survey elements are available with the following digital object identifiers (DOIs): Landscape features (Maskell et al., 2020a–c), https://doi.org/10.5285/82c63533-529e-47b9-8e78-51b27028cc7f, https://doi.org/10.5285/9f8d9cc6-b552-4c8b-af09-e92743cdd3de, https://doi.org/10.5285/f481c6bf-5774-4df8-8776-c4d7bf059d40; Vegetation plots (Smart et al., 2020), https://doi.org/10.5285/71d3619c-4439-4c9e-84dc-3ca873d7f5cc; Topsoil physico-chemical properties (Robinson et al., 2019), https://doi.org/10.5285/0fa51dc6-1537-4ad6-9d06-e476c137ed09; Topsoil meso-fauna (Keith et al., 2019), https://doi.org/10.5285/1c5cf317-2f03-4fef-b060-9eccbb4d9c21; Topsoil particle size distribution (Lebron et al., 2020), https://doi.org/10.5285/d6c3cc3c-a7b7-48b2-9e61-d07454639656; Headwater stream quality metrics (Scarlett et al., 2020a), https://doi.org/10.5285/e305fa80-3d38-4576-beef-f6546fad5d45; Pond quality metrics (Scarlett et al., 2020b), https://doi.org/10.5285/687b38d3-2278-41a0-9317-2c7595d6b882; Insect pollinator and flower data (Botham et al., 2020), https://doi.org/10.5285/3c8f4e46-bf6c-4ea1-9340-571fede26ee8; and Bird counts (Siriwardena et al., 2020), https://doi.org/10.5285/31da0a94-62be-47b3-b76e-4bdef3037360.


2021 ◽  
Vol 4 ◽  
Author(s):  
Bruno Montibeller ◽  
Jaak Jaagus ◽  
Ülo Mander ◽  
Evelyn Uuemaa

Shifts in climate driven by anthropogenic land use and land cover change are expected to alter various land–atmosphere interactions. Evapotranspiration (ET) is one of these processes and plays a fundamental role in the hydrologic cycle. Using gridded reanalysis and remote sensing data, we investigated the spatiotemporal trends of precipitation, temperature, and ET for areas in the Baltic countries Lithuania, Latvia and Estonia where the land cover type had not changed from 2000 to 2018. We focused on ET but investigated the spatiotemporal trends for the three variables at monthly, seasonal, and annual time scales during this period to quantify trade-offs among months and seasons. We used the Mann-Kendall test and Sen’s slope to calculate the trends and rate of change for the three variables. Although precipitation showed fewer statistically significant increasing and decreasing trends due to its high variability, temperature showed only increasing trends. The trends were concentrated in late spring (May, +0.14°C annually), summer (June and August, +0.10°C), and early autumn (September, +0.13°C). For unchanged forest and cropland areas, we found no statistically significant ET trends. However, Sen’s slope indicated increasing ET in April, May, June, and September for forest areas and in May and June for cropland. Our results indicate that during the study period, the temperature changes may have lengthened the growing season, which affected the ET patterns of forest and cropland areas. The results also provide important insights into the regional water balance and complement the findings of other studies.


Author(s):  
Jiren Xu ◽  
Fabrice G. Renaud ◽  
Brian Barrett

AbstractA more holistic understanding of land use and land cover (LULC) will help minimise trade-offs and maximise synergies, and lead to improved future land use management strategies for the attainment of Sustainable Development Goals (SDGs). However, current assessments of future LULC changes rarely focus on the multiple demands for goods and services, which are related to the synergies and trade-offs between SDGs and their targets. In this study, the land system (combinations of land cover and land use intensity) evolution trajectories of the Luanhe River Basin (LRB), China, and major challenges that the LRB may face in 2030, were explored by applying the CLUMondo and InVEST models. The results indicate that the LRB is likely to experience agricultural intensification and urban growth under all four scenarios that were explored. The cropland intensity and the urban growth rate were much higher under the historical trend (Trend) scenario compared to those with more planning interventions (Expansion, Sustainability, and Conservation scenarios). Unless the forest area and biodiversity conservation targets are implemented (Conservation scenario), the forest areas are projected to decrease by 2030. The results indicate that water scarcity in the LRB is likely to increase under all scenarios, and the carbon storage will increase under the Conservation scenario but decrease under all other scenarios by 2030. Our methodological framework and findings can guide regional sustainable development in the LRB and other large river basins in China, and will be valuable for policy and planning purposes to the pursuance of SDGs at the sub-national scale.


2021 ◽  
Author(s):  
Martin Steinbacher ◽  
Christoph Hueglin ◽  
Stefan Reimann ◽  
Brigitte Buchmann ◽  
Lukas Emmenegger

<p>Im Unterschied zu Forschungsinfrastrukturen in anderen Disziplinen, zeichnen sich Forschungsinfrastrukturen für Umweltbeobachtungen in der Regel durch langfristige Messungen zahlreicher Parameter mit verschiedenen Instrumenten an unterschiedlichen Orten aus. Bodengestützte, atmosphärische Beobachtungen von Luftschadstoffen und Klimagasen können unterschiedliche Ziele verfolgen, wie zum Beispiel die Überwachung regulatorischer Massnahmen und die Einhaltung von Grenzwerten, die wissenschaftliche Untersuchung von Variabilitäten und Trends, die Validierung von Modellrechnungen und Satellitenbeobachtungen oder die Früherkennung von neu auftretenden Substanzen. Die Qualitätskontrolle und Qualitätssicherung müssen nicht nur dem dezentralen Charakter der Beobachtungen Rechnung tragen, sondern auch sicherstellen, dass die der Fragestellung angepassten Datenqualitätsziele erreicht werden. Zusätzlich müssen Beobachtungen, die Teil von mehreren Messnetzen und Infrastrukturen sind, verschiedene Kriterien erfüllen, z.B. im Hinblick auf das Normal der Rückführbarkeit, die Präzision, aber auch bezüglich Dokumentation und Bereitstellung der Resultate in Datenbanken.</p> <p>Die Präsentation gibt einen Überblick über die langfristigen Luftqualitätsmessungen in der Schweiz im Rahmen des Nationalen Beobachtungsnetzes für Luftfremdstoffe (NABEL), ihre Einbettung in das European Monitoring and Evaluation Programme (EMEP), die Kooperation mit den europäischen Forschungsinfrastrukturen ICOS (Integrated Carbon Observation System) und ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), und die Zusammenarbeit in globalen Aktivitäten wie dem Advanced Global Atmospheric Gases Experiment (AGAGE) zur kontinuierlichen Messung von klimawirksamen und ozonabbauenden Substanzen und dem von der Weltorganisation für Meteorologie (WMO) koordinierten Global Atmosphere Watch (GAW) Programm.</p>


2011 ◽  
Vol 35 (5) ◽  
pp. 575-594 ◽  
Author(s):  
Marion B. Potschin ◽  
Roy H. Haines-Young

The ‘ecosystem service’ debate has taken on many features of a classic Kuhnian paradigm. It challenges conventional wisdoms about conservation and the value of nature, and is driven as much by political agendas as scientific ones. In this paper we review some current and emerging issues arising in relation to the analysis and assessment of ecosystem services, and in particular emphasize the need for physical geographers to find new ways of characterizing the structure and dynamics of service providing units. If robust and relevant valuations are to be made of the contribution that natural capital makes to human well-being, then we need a deeper understanding of the way in which the drivers of change impact on the marginal outputs of ecosystem services. A better understanding of the trade-offs that need to be considered when dealing with multifunctional ecosystems is also required. Future developments must include methods for describing and tracking the stocks and flows that characterize natural capital. This will support valuation of the benefits estimation of the level of reinvestment that society must make in this natural capital base if it is to be sustained. We argue that if the ecosystem service concept is to be used seriously as a framework for policy and management then the biophysical sciences generally, and physical geography in particular, must go beyond the uncritical ‘puzzle solving’ that characterizes recent work. A geographical perspective can provide important new, critical insights into the place-based approaches to ecosystem assessment that are now emerging.


2019 ◽  
Vol 6 (4) ◽  
pp. 746-757 ◽  
Author(s):  
Guoyi Zhou ◽  
Shan Xu ◽  
Philippe Ciais ◽  
Stefano Manzoni ◽  
Jingyun Fang ◽  
...  

Abstract Soil organic carbon (SOC) plays critical roles in stabilizing atmospheric CO2 concentration, but the mechanistic controls on the amount and distribution of SOC on global scales are not well understood. In turn, this has hampered the ability to model global C budgets and to find measures to mitigate climate change. Here, based on the data from a large field survey campaign with 2600 plots across China's forest ecosystems and a global collection of published data from forested land, we find that a low litter carbon-to-nitrogen ratio (C/N) and high wetness index (P/PET, precipitation-to-potential-evapotranspiration ratio) are the two factors that promote SOC accumulation, with only minor contributions of litter quantity and soil texture. The field survey data demonstrated that high plant diversity decreased litter C/N and thus indirectly promoted SOC accumulation by increasing the litter quality. We conclude that any changes in plant-community composition, plant-species richness and environmental factors that can reduce the litter C/N ratio, or climatic changes that increase wetness index, may promote SOC accumulation. The study provides a guideline for modeling the carbon cycle of various ecosystem scales and formulates the principle for land-based actions for mitigating the rising atmospheric CO2 concentration.


2016 ◽  
Vol 371 (1696) ◽  
pp. 20150342 ◽  
Author(s):  
G. Matt Davies ◽  
Nicholas Kettridge ◽  
Cathelijne R. Stoof ◽  
Alan Gray ◽  
Davide Ascoli ◽  
...  

Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions. This article is part of the themed issue ‘The interaction of fire and mankind’.


2019 ◽  
Vol 12 (1) ◽  
pp. 293 ◽  
Author(s):  
Monika Egerer ◽  
Jacob Cecala ◽  
Hamutahl Cohen

Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.


Sign in / Sign up

Export Citation Format

Share Document